
A simple pipeline for simulating SNAP
photometric measurements
Michael Richmond
Aug 1, 2004
Aug 19, 2004

Table of Contents

Introduction
How to download and install
Stage 1: setup
Stage 2: filters
Stage 3: input catalog of stars
Stage 4: the telescope
Stage 5: focal plane layout
Stage 6: (optional) drawing the focal plane
Stage 7: taking snapshots
Frequently Asked Questions

Introduction

I have written code which simulates measurements of stellar magnitudes by the SNAP telescope. It is
not the official SNAP simulation, nor does it have any relationship to the official software. However,
it does allow me to calculate the expected signal from a particular sort of star in a given exposure
time, and it also permits me to evaluate various schemes for commissioning the telescope when it first
reaches orbit.

Since other SNAP calibration team members may find the program useful, I am making it available to
all. This document describes briefly how one can download, install, and use the program.

How to download and install the program

The requirements for running the pipeline are:

TCL (plus Tk if you want to draw pictures of the focal plane)
C compiler
standard Unix tools (e.g., make)
Perl (to run the selftest script)

Here are very brief instructions for setting things up. I'll follow each step with an example of the
procedure.

1. create a directory for the pipeline

 % cd /data/
 % mkdir snap
 % cd snap
 %

2. download the compressed package (a copy should be on my SNAP status page for Aug 19, 2004)

 % wget http://spiff.rit.edu/richmond/snap/pipeline/aug19_2004/snap_pipeline-0.2.tar.
 100%[====================================>] 6,920,628 36.07M/s ETA 00:00
 13:47:15 (36.07 MB/s) - `snap_pipeline-0.2.tar.gz' saved [6920628/6920628]
 % ls
 snap_pipeline-0.2.tar.gz
 %

3. un-gzip and un-tar the package

 % ls
 snap_pipeline-0.2.tar.gz
 % tar -xzf snap_pipeline-0.2.tar.gz
 % ls
 snap_pipeline-0.2 snap_pipeline-0.2.tar.gz
 %

4. go into the main source code directory

 % cd snap_pipeline-0.2
 %

5. run "./configure"

 % ./configure
 checking for a BSD-compatible install... /usr/bin/install -c
 checking whether build environment is sane... yes
 (plus lots more like this ...)
 config.status: creating output/Makefile
 config.status: executing depfiles commands
 %

6. run "make"

 % make
 Making all in input
 make[1]: Entering directory `/xx/tmp/snap/snap_pipeline-0.2/input'
 (plus lots more like this)
 gcc -g -O2 -o flam_mag flam_mag.o -lm
 make[1]: Leaving directory `/xx/tmp/snap/snap_pipeline-0.2'
 %

7. run "make check"

 % make check
 selftest.pl: running test of SNAP pipeline code
 selftest.pl: about to test for tclsh: ..tclsh ./selftest.tcl..
 selftest.pl: about to test for wish: ..wish ./selftest.tcl..
 selftest.pl: going to use wish as interpreter

 selftest.pl: cmd is ..wish ./selftest.tcl >& ./selftest.out..
 selftest.pl: about to run SNAP pipeline; this may take a minute
 selftest.pl: you may see a graphics window pop up
 (and a window may pop up here)
 selftest.pl: all tests passed OK
 PASS: selftest.pl
 ==================
 All 1 tests passed
 ==================
 make[2]: Leaving directory `/xx/tmp/snap/snap_pipeline-0.2'
 make[1]: Leaving directory `/xx/tmp/snap/snap_pipeline-0.2'
 %

If all goes well, you may see a window with a picture of the SNAP focal plane pop up and then
disappear after 10 or 20 seconds. The selftest Perl script should end by writing

 PASS: selftest.pl
 ==================
 All 1 tests passed
 ==================

to indicate that the pipeline ran a small test procedure successfully. If you now look in the "output"
subdirectory, you ought to see a bunch of files created by the selftest script.

If the selftest script fails, you can look in the file "selftest.out" for a log of the pipeline's output as it
ran. This may give some clue to any errors which occurred. If you need more information, try editing
the file snap_driver.tcl to make the "debug" level higher than 2; so, change this:

global debug
set debug 2

to this:

global debug
set debug 6

Then run the "selftest.pl" script again:

 % perl selftest.pl

and look once more in the "selftest.out" file for a more verbose log of the pipeline's operations. a value
of 6 might be

Once the program has been installed, you should have

a top-level directory with lots of TCL files
a sub-directory called "input" with lots of stellar spectra and other input information
a sub-directory called "output", into which the pipeline places its intermediate and final results
a sub-directory called "doc" with detailed documentation (including this file)

The file snap_driver.param contains a list of "stages":

flags to execute (or not) specific pieces of the pipeline

1 means execute it
0 means skip it
do_setup 1
do_refcat 1
do_focal 1
do_filter 1
do_draw_focal 1
do_telescope 1
do_snapshot 1

By editing this file and changing the values of some of these parameters to 0, one can skip over
portions of the pipeline and save time. For example, by running the "refcat" stage once, one will create
a catalog of stars which can be used over and over again for many tests; there is no need to re-create
the catalog for each one.

One way to run the pipeline is to start a TCL interpreter and then execute commands from the main
program:

$ tclsh
% source snap_driver.tcl

For convenience, I've created a small text file, "cmd.in", which contains nothing more than this single
source command, so that one can execute the pipeline and capture its output in a single command:

$ tclsh < cmd.in >& cmd.out

Stage 1: setup

The first stage of the pipeline simply modifies the parameter files so that they indicate the proper
values for the current installation. The file setup.param is an ASCII text file; part of it looks like this:

directory containing the input data: focal plane info, filter
transmission curves, star catalogs, etc.
input_dir ./input

The input_dir parameter is defined here to have the value "./input", meaning that input files can be
found in a subdirectory of the current directory called "input". Many other parameter files contain this
same variable input_dir.

If you wanted to move the installation so that all the input files were located somewhere else, you
might edit the file so that read

directory containing the input data: focal plane info, filter
transmission curves, star catalogs, etc.
input_dir /home/fred/snap/input

Since input_dir appears in other parameter files, you could edit all of them, too, making the same
change in each. However, there is an easier way: when the "setup" stage runs, it takes the values of
any parameters in the setup.param file and copies their values to all the other parameter files. By
changing just one file, setup.param, and then running the "setup" stage of the pipeline, any changes

are disseminated to all relevant files.

Stage 2: filters

The second stage of the pipeline prepares the overall transmission curves we will use for each detector
on the focal plane. In the input_dir are the components which affect the spectral efficiency of the
instrument:

the reflectivity of mirror coatings
the nominal transmission curves of the fiducial filters
the quantum efficiency of detectors as a function of wavelength

The "filter" stage of the pipeline convolves these factors in the appropriate way to generate overall
transmission curves as a function of wavelength. It places into the output_dir two things:

an "index" which specifies the name and properties of each particular filter/chip combination. In
the filter.param file, the filter_assn parameter gives the name of this index file. Its first few lines
might look like this:

 filt_000 { 0 000A 0 1 5 1 filt_000A.dat }
 filt_001 { 1 000B 0 2 3 1 filt_000B.dat }
 filt_002 { 2 000C 0 3 4 1 filt_000C.dat }

The zero'th filter lies on quadrant "A" of the chip with index 0. It is based on the fiducial filter
with index 5 (the reddest visible filter), but its overall transmission can be found in the file
"filt_000A.dat" in the output_dir.

a set of files with names like filt_000A.dat filt_001B.dat filt_009.dat which contain
the overall passband for each filter/chip combination. Each contains ASCII text like this:

 8407.0000 0.6792
 8408.0000 0.6800
 8409.0000 0.6809

in which the first column is the wavelength in Angstroms, and the second column the throughput
at that wavelength, on a scale of 0.0 - 1.0.

This stage of the pipeline uses the executable program spec_convolve to combine all the individual
transmission curves into a single overall curve.

Stage 3: input catalog of stars

The user must supply a set of stars which will be run through the telescope and detectors. This stage of
the pipeline converts the input catalog from a format which is relatively easy to provide into one
which the code can use.

The input format is based on that of the USNO A2.0 catalog, as provided by SIMBAD's Vizier query
facilty. If one visits Vizier and queries this catalog around the position RA=18:00:00 and
Dec=+67:00:00, with a search radius of 5 arcminutes, requesting output position in decimal degrees,
one will receive a list like so:

#Full _r _RAJ2000 _DEJ2000 USNO-A2.0 RA(ICRS) DE(ICRS)
arcmin "h:m:s" "d:m:s" deg deg
 1 0.4936 269.999675 67.008225 1500-06401275 269.999675 67.008225
 2 0.7868 270.013567 67.011995 1500-06401517 270.013567 67.011995
 3 0.8811 270.030500 67.008584 1500-06401783 270.030500 67.008584
 4 0.9718 270.024300 66.986881 1500-06401699 270.024300 66.986881
 5 1.0931 269.957114 66.992856 1500-06400616 269.957114 66.992856

Note that this list includes position (J2000), the B-band magnitude and R-band magnitude. These are
(almost) the only pieces used by the pipeline. It uses the (B-R) color to look up and interpolate the
spectral type of a star in the file input_dir/calc_colors.out. A guess at the V-band magnitude is
determined by taking the average of the B and R magnitudes. Using a set of template spectra from
Pickles , the pipeline generates synthetic magnitudes for the star in all nine fiducial SNAP passbands.
It writes into the output_dir a catalog containing the same stars in a somewhat different format, like
this:

 269.99968 67.00822 f5v 29.278 1 18.050 0 18.309 2 17.931 3 17.8
 270.01357 67.01199 a5v 29.819 1 18.500 0 18.544 2 18.554 3 18.6
 270.03050 67.00858 k0v 24.973 1 13.850 0 14.339 2 13.553 3 13.3
 270.02430 66.98688 f5v 27.628 1 16.400 0 16.659 2 16.281 3 16.2

There first element in the list of (filter index, magnitude) has an index of 1; the pipeline assumes that
the fiducial SNAP passband number 1 (a slightly redshifted B-band) is close to the Johnson-Cousins
V-band, and uses it to normalize magnitudes of stars of different spectral types. That is, it forces an O-
star of magnitude V=20 to have the same number of photons in SNAP passband 1 as an M-star of
magnitude V=20.

What about light from the sky background? If the user wishes calculations to include the background,
he must place into the input catalog of stars a special entry for the sky; my calculations of the
background sky brightness indicate that an entry should look like:

 9999 sky 271.271281 66.744063 QQ 271.671281 66.744063 23.52 23

The RA and Dec, elements 3 and 4, can be modified as desired; it is the magnitude values near the end of this line
which are important.

This has special features:

the second element in the line is the word "sky", which causes the pipeline to use as its spectrum
the file input_dir/uksky.dat
the B-band and R-band magnitude values refer, for a sky entry, to the magnitude per square
arcsecond in V-band. By making them both 23.52, I am stating that one square arcsecond of the
background sky is as bright in the V-band as a star of magnitude V=23.52.

If the input catalog does not contain any "sky" entry, then the calculations of signal and noise will use

a sky value of zero.

Stage 4: the telescope

This stage of the pipeline does very little. It calculates the effective collecting area of the telescope. It
also sets the factor by which the telescope optics illuminate one portion of the focal plane differently
than another; by default, there is no variation in illumination.

Stage 5: focal plane layout

The SNAP focal plane is a complicated structure: it contains 72 detectors arranged in four quadrants
around an annulus. Some of the detectors (the IR ones) have a single filter covering their entire
surface, but others (the visible CCDs) are split into four pieces with a different filter in front of each.
Moreover, the detectors in each quadrant are rotated relative to each other.

This stage goes through the tedious process of figuring out exactly where on the focal plane each
detector lies, how it is rotated, which filters lie in front of it, and so forth. It writes a file into the
current directory (not the output_dir) indicated by the foc_output_file parameter in focal.param, which
contains a list of all the chips and their properties. This file is then used by other code further
downstream.

Note that the parameter file focal.param for this stage contains a great deal of information on the
layout of the focal plane and properties of the detectors. For example, the lines

default properties of visible CCD detectors
foc_vis_prop { { dark 0.0005 } { read 4 } { gain 2.0 } { sat 130000 } { offset
default properties of the IR detectors
foc_ir_prop { { dark 0.04 } { read 20 } { gain 2.0 } { sat 100000 } { offset

describe the readout noise, dark current, saturation levels, etc., for the visible and near-IR detectors.

The user can control the cosmetic quality of the detectors via the foc_chip_variation parameter.
Possible values are

none
each detector has uniform response across its area

center
each detector has an identical radial decrease in sensitivity away from its center

linear
each detector has an identical linear decrease in sensitivity in one direction, uniform
response in the other

random
each detector has a different random decrease in sensitivity in an elliptical pattern
around a random location on the chip

Any variations are described by a simple polynomial of the form

 1.0
 relative sensitivity = -------------------------------------
 a + b*x + c*y + d*x*x + e*x*y + f*y*y

where x = (row - row0), y = (col - col0), and (row0, col0) is the location with peak sensitivity. The
numerical coefficients of the polynomials describing the variations (if any) will be written into the file
indicated by the foc_output_file parameter.

The parameter foc_east_only in focal.param controls whether the detectors are in the East quadrant
only (set foc_east_only to 1)

or fill the entire focal plane (set foc_east_only to 0)

Stage 6: (optional) drawing the focal plane

If the user chooses to execute the draw_focal stage, and if the graphical Tk interpreter is available,
then the code will draw a Postscript picture of the focal plane and place it in the output_dir. The name
of the output file is set by the output_file parameter in focal.param.

If the user goes on to take a snapshot, then this picture will have placed on it a depiction of all
detected stars. As described in my status report of August 21, 2003, the picture uses dots and circles of
different sizes to indicate stars of different magnitudes:

Stage 7: taking snapshots

The heart of the pipeline is the calculation of the instrumental magnitude of each star which falls on a
detector. Variables in snapshot.param allow the user to take one or many "snapshots": each snapshot
is a single simultaneous exposure of all the detectors. The parameters

snapshot_step_ra 0.0
snapshot_step_dec -0.01

describe how far (in degrees) the telescope moves from one snapshot to the next. At the moment, the
user can specify only a single pass of linear motion.

The calculations follow this path:

determine which detector and filter a given star strikes
convolve the spectrum of the star with the overall transmission of that filter/detector unit
normalize the result to photons per square centimeter per second (using Vega as a flux standard)
calculate the total number of photons detected
include any vignetting caused by optics
convert the number of detected photons to an instrumental magnitude

In order to determine the uncertainty in the measurement, we follow the simple model of Howell
(1989)

We use synthetic aperture photometry, with a circular aperture of size given by the snapshot_aper_rad
parameter, and assume all the starlight falls within the aperture. We calculate the signal-to-noise ratio
for the measurement, and turn that into an uncertainty in magnitude using

 1.0
 mag_uncertainty = ---------------
 signal_to_noise

If the parameter snapshot_add_noise in the snapshot.param file is set to 1, then a random value drawn
from a gaussian distribution with standard deviation equal to this uncertainty is added to the
magnitude measurement. If the snapshot_add_noise parameter is zero, then the magnitude is left in its
"perfect" state.

The measurements are placed into the output_dir in two different files (or sets of files).

a "terse" version, with name given by the terse_obsfile parameter, contains a list of measured
stars with RA, Dec, instrumental magnitude and uncertainty:

 271.27128 66.74406 22.9827 0.0658
 271.55585 66.85864 19.4291 0.0079

 271.55585 66.85864 19.9742 0.0104

a "verbose" version, with name given by the verbose_obsfile parameter, includes much more
information:

 271.27128 66.74406 sky 34.659 23.908 23.520 23.269 23.079 22.971 23.0
 271.55585 66.85864 a0v 31.385 19.955 20.000 20.133 20.292 20.431 20.5
 271.55585 66.85864 g0v 31.197 20.346 20.000 19.824 19.707 19.633 19.6

The "verbose" output files allow one to search for variations in observed magnitude as a function of
position in focal plane, or stellar color, etc. The fields in the verbose output are

1. RA (decimal degrees J2000)
2. Dec (decimal degrees J2000)
3. spectral type
4. magnitude zero point (internal use only)
5. list of magnitude in each of the 9 fiducial passbands (elements 5-13)

14. chip index number
15. row on chip
16. col on chip
17. x-position in the focal plane (mm from center)
18. y-position in the focal plane (mm from center)
19. radial distance from center of focal plane (mm)
20. angle from normal at which light strikes filter (degrees)
21. synthetic magnitude through fiducial filter
22. actual filter index on focal plane
23. fiducial filter index
24. instrumental magnitude
25. uncertainty in instrumental magnitude
26. difference between actual magnitude through telescope and synthetic magnitude through fiducial

filter

Frequently Asked Questions

1. How many photons are actually detected in some particular exposure of a given star?

The instrumental magnitudes produced by the pipeline have the form

 mag = mag_zero - 2.5*log10(num_photons)

where the value of "mag_zero" is given by the snapshot_mag_zero parameter in the
snapshot.param file; its default value is 30.0. So, for example, if the given star appears in
an output file with magnitude 24.65, then the number of detected photons must be

 0.4*(mag_zero - mag)
 num_photons = 10

 0.4*(30 - 24.65)
 = 10 = 138

2. Is it possible to modify the filter passbands?

Yes, but it will take a bit of work. The input directory contains a set of files containing the
default passbands for the SNAP filters, with names like fiducial_b0.filter, fiducial_b1.filter,
etc. You may either modify by hand the values in these files, or create a different set of files
with the same simple 2-column ASCII format; then re-run the do_filter step of the pipeline.
This should create a new set of overall (filter plus mirrors plus detectors) passband files in
the output directory with names like filt_003A.dat.

