Prioritizing the mass measurements of small planets with Subaru/IRD John Livingston¹, Motohide Tamura^{1,2} ¹The University of Tokyo, ²Astrobiology Center, National Astronomical Observatory of Japan

Probl	lem
nt uncertai	nties pe

- Significant uncertainties persist in the mass-radius (M-R) relation, especially for the most interesting planets -- those of Terran to Neptunian size.
- Many small worlds can be equally well modeled as either rocky or volatile-rich.
- Planets in this size regime are high priority targets for future atmospheric study with *JWST*, but large uncertainties in predicted atmospheric scale height complicates target prioritization, which is essential for optimal use of the ~\$10B observatory.

• We want to improve the M-R relation for small planets via optimal use of the Subaru telescope's new **Infrared Doppler (IRD)** instrument (Tamura et al. 2012). • Late-type stars have low mass and frequently host small planets, which makes them ideal targets for this purpose, but they are optically faint. • IRD is thus uniquely capable of measuring the masses of small planets orbiting low mass stars due to the combination of its sensitivity in the IR and Subaru's large aperture.

Current knowledge

Recently Chen & Kipping (2016) updated the M-R relation across the full range of planetary to stellar regimes using a large calibration sample of known bodies with precisely measured masses and radii:

Goal

