Hot Jupiters in Odd Places: How Did They Get There?
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Fig. 1 Accounts for at least 10% of known exoplanets mostly Fig. 2. Orbital motion of 51 Peg at 4 different epochs spin-orbit misalignment. A second star has been detected shown left in the Orbit Inclination [degree]
discovered by transit and RV techniques. (Mayor & Queloz et al. 1995) near-IR image captured by the 8-m Subaru telescope.
Types of Planetary Migration Migration Stopping Mechanisms
Origin of Hot Jupiters Types of Dynamical Interactions Type |: spiral density wave is formed Hot Jupiters stop migrating inward when they reach a barrier
Type ll: a gap is formed between the disk and a high mass due to:
e Hot Jupiters must form further out from their host stars * planet-planet scattering (e.g., Wu & Murray 2003), planet e the star's magnetic field - traps the planet in orbital resonance
i.e., beyond the snow line, and either: e Kozai mechanism (e.g., Kozai 1962), gap is the result of the tidal torques from the planet becoming with the magnetospheric truncation radius (Eisner et al. 2005)
e migrate embedded in a primordial disk or ¢ 15% of hot Jupiters undergo migration via the Kozai stronger than the viscous torques of the disk e a gap between the star and the inner edge of its dusty disk
e migrate via dynamical interactions (e.g., Lin et al mechanism, instead favoring planet-planet scattering W —>traps the planet in orbital resonance with the dust sublima-
1996; Lubow & Ida 2010; Triaud et al. 2010) (Dawson et al. (2013a,b) tion radius (e.g., Kuchner & Lecar 2002)
e secular chaos (e.g., Nagasawa & Ida 2011; Wu & Lithwick e the parent star's gravitational forces —>circularizes and stabilizes
2011) the planet’s orbit (Ford & Rasio 2006; Wu et al. 2007; Guil-

lochon et al. 2011; Arras et al. 2011; Matsumura et al. 2010; Lai

o 2011)
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Fig. 4. Migrating gas giants gravitationally perturb smaller, rocky planets from their orbits sometimes ejecting them out of the system e CON: not enough material orbiting close to the star to allow ® Article accessed on 11/15: http://www.sciencemag.org/news/2016/07/
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