Exoplanets: an Introduction

AST Special Topics course: Exoplanets
Joel Kastner & Michael Richmond,
Instructors
Spring 2015

What Is a Planet?

- No need to argue about this; it's been settled:
 - https://www.youtube.com/watch?v=xGoZZvfEd6A

Or has it?

- I am happy to defend [QVC host Mizrahi]. I see no logical reason why large moons that are in hydrostatic equilibrium should not be considered planets too, and I call them that. – Dr. Alan Stern, PI, New Horizons (NASA's Pluto flyby mission); NY Times, 1/20/15
- The vast majority of the international community has clearly accepted [the IAU's definition of a planet].
 Dr. Thierry Montmerle, IAU Secretary General; ibid.

See also:

- Is Pluto a Planet? (by David Weintraub)
- How I Killed Pluto, and Why It Had It Coming (by Michael Brown)

What Is a Planet?

- Official IAU definition of a planet (in our solar system):
 - The IAU members gathered at the 2006 General Assembly agreed that a "planet" is defined as a celestial body that (a) is in orbit around the Sun, (b) has sufficient mass for its self-gravity to overcome rigid body forces so that it assumes a hydrostatic equilibrium (nearly round) shape, and (c) has cleared the neighbourhood around its orbit.
- IAU working definition of an exoplanet (a planet orbiting a star other than the Sun):
 - 1. Object w/ "true mass" below the limit for thermonuclear fusion of deuterium (presently estimated at 12-13 M_{lun})
 - 2. Orbits a star or stellar remnant
 - 3. Has a "mass and/or size" larger than the low-mass limit established for planets in our solar system
 - Implications:
 - objects w/ masses between $^{\circ}$ 0.08 M_{sun} ($^{\circ}$ 80 M_{jup}) and $^{\circ}$ 13 M_{jup} are *brown dwarfs*, regardless of how they formed or where they're located (i.e. a 14 M_{jup} object orbiting a star is a BD)
 - Free-floating objects with masses below ~13 M_{jup} are not planets, regardless of how they formed

Planetary dynamics

- Planets in orbit about stars "obey" Kepler's Laws:
 - 1. Planets move along elliptical paths, with the star at one focus
 - Eccentricity of orbit: ratio of half the distance between foci to semimajor axis (a)
 - Line connecting planet & star sweeps out equal areas in equal times
 - 3. For a set of planets orbiting the same star, square of period is proportional to cube of semimajor axis
 - Star's mass (& G) yield constant of proportionality
- Caveats: tides (for small separations), multiplebody interactions

Planet detection/characterization: Observational techniques

- Radial velocity
- Astrometry
- Timing
- Gravitational microlensing
- Transits
- Direct imaging

Techniques that yield exoplanet masses and (in some cases) orbital semimajor axes

Radial velocity

- Determination of line-of-sight planet-induced reflex motion of star
 - Yielded first detection of planet around a "normal star"
 - 51 Peg, in 1995...but 51 Peg b is not a "normal" planet...
 - Can only yield minimum planet mass, Mp sin i
 - i = inclination of orbital axis w/ respect to line of sight
 - Yields period (and eccentricity) hence semimajor axis, given determination/estimate of parent star's mass

Astrometry

- Measurement of periodic wobble in star's space (proper) motion by (unseen) planet
 - Can yield "true" mass (w/o "sin i" dependence)
 - Yields period (and eccentricity) hence semimajor axis, given determination/estimate of parent star's mass
- No astrometric planet detections...yet...
 - ESO's Gaia mission is about to change that (and a lot of other things)!
 - Will be the Kepler of the astrometric planet detection world...

Techniques that yield exoplanet masses and (in some cases) orbital semimajor axes (cont.)

Timing

- Measurement of perturbations of (otherwise stable)
 stellar rotation or pulsation periods
 - Yielded first detection of planets (around a pulsar) in 1992
 - Yields period (and eccentricity) hence semimajor axis, given determination/estimate of parent star's mass

Gravitational microlensing

- Focusing of background star's light by passage of foreground star/planet pair yields short-lived brightening of the background star
 - One-time event, but can yield star & planet masses and (instantaneous) star-planet separation

Techniques that yield other exoplanet properties

Transits

- Planet passes in front of star as seen from Earth
 - For low eccentricity and $R_p \ll R_*$, probability of transit is $p = R_*/a$
- Yields planet radius
 - From depth of transit, given determination/estimate of parent star's radius
- Multiple transits yield planet's period
 - hence semimajor axis, given determination/estimate of parent star's mass
- NASA's Kepler mission has detected thousands of exoplanets and exoplanet candidates via this method!

Direct imaging

- Presently only feasible for exoplanets at large orbital semimajor axes
 - Note: 1" separation corresponds to 10 AU for a (nearby) star at 10 pc
- Easiest for young, self-luminous planets
 - Can detect planet's heat (generated via ongoing gravitational contraction) via thermal infrared imaging
 - Poster children: HR 8799, beta Pic

How do planets form?

- If you figure it out, tell me...but, all seriousness aside...
- Planets form in circumstellar disks that are a necessary byproduct of star formation
 - Necessary to understand disk origin & evolution so disk structure, composition, shaping & dispersal processes, etc, etc...
 - Entire field in itself
- Giant planet formation may be rapid
 - Timescale < 10 Myr? (e.g., Zuckerman, Forveille, & Kastner 1995)
- Terrestrial planet formation likely requires 10s-100s of Myr

Giant planet formation & migration

- Giant planet formation: competing models
 - agglomeration of solid core + accretion of disk gas ("core accretion"; slower)
 - disk gravitational instability (faster)
- Giant planets likely migrate
 - Poster child is 51 Peg b (first exoplanet discovered around normal star): a giant planet in a few-day orbit
 - Type I migration: gravitational interaction between planet & massive disk
 - Type II migration: massive planet exerts torques on (& opens gap within) disk

Exoplanet structure: interiors

- Planets can be "decomposed" in terms of rock, ice, & gas (mass) components
 - E.g., in our solar system, M, V, E, M: rocky; J, S: massive gas envelopes (surrounding ~10 M_{earth} rock/ice cores?); U, N: massive ice/rock cores w/ gas envelopes?
- Requires measurements of planet mass and radius...plus modeling

Exoplanet structure: atmospheres

- Origins in circumstellar disk gas (massive, gas giant planets) vs. outgassing (terrestrial planets)
- How to probe atmospheric composition?
 - direct imaging/spectroscopy
 - Only feasible for the brightest & widest-separation exoplanets
 - Transmission spectroscopy
 - Feasible for transiting exoplanets orbiting bright stars
 - Requires excellent calibration stability => initial attempts mostly by space telescopes (HST, Spitzer)
 - Major goal for the field of astrobiology!
 - Hunt for *biomarkers* in exoplanet atmospheres

NASA Exoplanets Archive

http://exoplanetarchive.ipac.caltech.edu/

Assignment(s) #1:

- Browse to familiarize yourself with the available data & plots
- Note trends in the planet data available (exoplanet table columns) as functions of planet discovery method
- Note trends in the planet data available as functions of host star's designation

