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Young, low-mass stars are luminous X-ray sources1 whose powerful X-ray flares2-6 

may exert a profound influence over the process of planet formation7. The origin 

of such emission is uncertain. Although many or perhaps most recently formed, 

low-mass stars emit X-rays as a consequence of solar-like coronal activity1,8,9, it has 

also been suggested that X-ray emission may be a direct result of mass accretion 

onto the forming star10-12.  Here we report X-ray imaging spectroscopy 

observations which reveal a factor ~50 increase in the X-ray flux from a young star 

that is presently undergoing a spectacular optical/IR outburst13,14.  The outburst is 

thought to be due to the sudden onset of a phase of rapid accretion14-16.  The 

coincidence of a surge in X-ray brightness with the optical/IR eruption 

demonstrates that strongly enhanced high-energy emission from young stars can 

occur as a consequence of high accretion rates. We suggest that such accretion-

enhanced X-ray emission from erupting young stars may be short-lived, because 

intense star-disk magnetospheric interactions are quenched rapidly by the 

subsequent accretion flood. 
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In November 2003 a young, low-mass star deeply embedded in the Lynds 1630 

dark cloud, which is located in the M78 (NGC 2068) star formation region in Orion, 

brightened suddenly [13, 14] in a manner that is reminiscent of optical outbursts 

associated with certain, less cloud-obscured, pre-main sequence (pre-MS) stars [16-18]. 

Such rarely-observed eruptions indicate that, for most (if not all) low-mass, pre-MS 

stars, long periods of relatively quiescent mass accretion at rates of 10-7 solar masses yr-

1 or less are punctuated by intense, short-lived (<100 yr duration) periods during which 

such stars may accumulate as much as 0.01 solar masses [16].  

It is possible that pre-MS accretion processes also generate X-rays. Such high-

energy radiation would occur due to the mediation of the accretion disk and stellar 

magnetospheres or, perhaps, due directly to the disk itself [10]. Models predict either 

episodic or steady reconnection of magnetic field lines occurring at the strong shear 

layer wherein the stellar magnetosphere truncates the inner part of the accretion disk. As 

the fields are wound up due to the shear they can balloon above and below the disk, 

eventually leading to reconnection and flares. This star-disk reconnection mechanism 

was proposed to explain the repeating X-ray flares of the low-mass protostar YLW 15 

[19]. Such activity may also drive well-collimated outflows or jets [20, 21]. 

As the first pre-MS star to be observed intensively just at the onset of an 

optical/IR outburst (Fig. 1), the erupting object in L1630 affords a unique opportunity to 

trace the X-ray luminosity and spectral evolution of what is, most likely, a major pre-

MS accretion event. We serendipitously detected the erupting pre-MS star in X-rays in 

Nov. 2002 -- approximately 1 year before outburst -- during a deep observation of the 

L1630 region [22] with the Advanced CCD Imaging Spectrometer (ACIS) aboard the 

Chandra X-ray Observatory (CXO). In March 2004, following the optical outburst, we 

twice used CXO/ACIS to obtain short-exposure observations of a field centered on the 
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erupting object, and detected a large increase in flux from the spatially coincident X-ray 

source (Table 1).  

In all three CXO/ACIS observations, a point-like X-ray source is detected within 

0.2" of the position of the erupting young star, which lies at the apex of a fan-shaped 

reflection nebulosity (McNeil’s Nebula; Fig. 2). The sharp increase in X-ray flux post-

outburst relative to pre-outburst closely tracks that of the optical and infrared brightness 

increase of the point-like optical/IR source (Fig. 1). Furthermore, the change in X-ray 

flux evidently was accompanied by a change in X-ray spectral hardness, as reflected in 

the mean energies of events at the three epochs of observation (Table 1). The results 

suggest that the source X-ray spectrum hardened considerably near the peak of the 

optical outburst, then softened as the outburst proceeded. The observed relationship 

between spectral hardness and X-ray flux indicates that the initial rise and subsequent 

decline in X-ray count rate is probably not due to changes in absorbing column along 

our line of sight but, instead, reveals large variations in the intrinsic source X-ray 

luminosity and temperature. Similarly, near-infrared monitoring suggests that most 

(~2.5 magnitudes) of the abrupt ~3 magnitude change in brightness at these wavelengths 

can be attributed to the object’s increase in intrinsic luminosity, rather than to a large 

change in extinction along our line of sight [15]. 

Modeling of the X-ray spectrum obtained 2004 March 7 indicates that the 

temperature of the X-ray-emitting gas (TX) was ~ 6x107 K and that the source is viewed 

through an absorbing column (NH) of ~ 6x1022 cm-2 (Fig. 3). Given a gas-to-dust ratio 

typical of the interstellar medium, the best-fit value of NH corresponds to dust extinction 

of AV  ~ 35 mag, whereas near-infrared measurements [15] yield AV ~ 15 mag. This 

discrepancy suggests that the gas-to-dust ratio in the circumstellar environment of the 

young star is larger than interstellar. 
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Assuming no change in the absorbing column toward the X-ray source, analysis 

of the pre- and post-outburst X-ray observations indicates that the intrinsic source X-ray 

luminosity rose from LX ~ 3x1029 erg/s pre-outburst to ~1031 erg/s post-outburst (where 

we also assume the distance to L1630 is 400 pc [23] and that the pre-outburst 

temperature of the source was TX = 107 K). This factor of ~30 increase is very similar to 

the increase in near-infrared luminosity [15], and its timing furthermore indicates a 

direct connection to the optical/IR event. In support of this conclusion, we note that 

about 15% of the ~1000 X-ray-emitting young stars in the Orion Nebula Cluster (ONC) 

exhibited X-ray flaring (in two CXO observations spanning a combined 83 ks period 

[24]); of these, only about five exhibited count rate increases of a factor 10 or more. 

Thus, based solely on the most highly variable ONC X-ray sources, the probability that 

we have observed a large-amplitude X-ray flare that is unrelated to the optical/IR 

outburst is < 3%. Furthermore, the erupting pre-MS star in L1630 displayed no evidence 

of strong X-ray variability during the long, pre-outburst observation in November 2002. 

The pre-outburst spectral energy distribution, circumstellar dust mass, and 

bolometric luminosity of the object in L1630 resemble those of T Tauri stars and 

erupting pre-MS (FU Ori) stars [25], and its outburst light curve to date (Fig. 1) is very 

similar to those of the FU Ori prototypes at outburst onset [16, 17]. Hence, it seems 

reasonable to attribute the rapid optical/IR brightness increase of this source to a sharp 

transition from relatively slow to exceedingly rapid accretion [14-16]. The 

contemporaneous X-ray burst therefore is best explained as ultimately due to accretion, 

as well. The inferred post-outburst X-ray temperature was far too high for the X-rays to 

be generated by shocks resulting from accretion onto a low-mass, pre-MS star, however 

[12]. Instead, the burst of X-rays was most likely generated via star-disk magnetic 

reconnection events that occurred in conjunction with such mass infall. This process 

may also launch new, collimated outflows or jets. Indeed, prior to its recent eruption, 

the pre-MS star in L1630 had been identified as the exciting source of a chain of 
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extended emission nebulosity that appears to terminate at a shock-excited Herbig-Haro 

object (HH 23) [26]. The presence of these structures suggests that the present 

optical/IR/X-ray outburst from this object may be merely the latest of a series of such 

events. 

If FU Ori stars are indeed among the most rapidly accreting pre-MS stars [16], 

and X-rays from pre-MS stars can be ascribed in part to accretion, then one would 

naively expect all FU Ori stars to be luminous pre-MS X-ray sources. It is noteworthy, 

then, that prior to the observations reported here only two FU Ori candidates, Z CMa 

and L1551 IRS5, had been detected in X-rays; furthermore, both exhibit very low LX/ 

Lbol ratios [27, 28] of ~ 10-6, compared with LX/ Lbol ~ 10-3 for the erupting young star in 

L1630 (as estimated near the peak of its outburst).  This suggests that the very large 

accretion rates during the steady-state phase following an FU Ori outburst eventually 

push the star-disk boundary sufficiently close to the stellar photosphere that the 

accretion becomes non-magnetospheric [29], thereby effectively "quenching" X-ray 

emission from such objects long before the rapid accretion phase itself subsides. The 

precipitous drop in the X-ray flux and spectral hardness of the erupting L1630 pre-MS 

star, post-outburst, may signal the onset of this quenching phase, or it may indicate that 

the abrupt change in the nature of the star-disk interactions has triggered a phase of 

strong variability in both X-ray luminosity and temperature. 
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CXO observations of the erupting object in L1630 acquired in March, 2004 were obtained under 

allocations of CXC Director's Discretionary Time. XSPEC software is maintained by NASA's High 

Energy Astrophysics Science Archive Research Center. The archival optical image in Fig. 1 was obtained 
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Fig. 1: Near-infrared and X-ray photometry of the erupting young star in L1630 

obtained in the period from late 1998 through 2004 March. CXO points are 

observed source fluxes calculated from the count rates in Table 1. The J- (1.25 

µm), H- (1.65 µm), and K-(2.2 µm) band photometric data are from the 2MASS 

archive (pre-outburst) and SAAO SIRIUS, Gemini NIRI, and NOFS 1.55m (post-

outburst); I-band photometric data are from Briceno et al. (2004 [14]) and B. 

Gary (2004, private comm.) 

Fig. 2: Chandra X-ray Observatory and visible-light images of the region 

surrounding McNeil's Nebula. The Chandra/ACIS image (color) is overlaid with 

contours from a short-exposure (10 s) R-band image of the nebula obtained 

with the FORS2 camera at the European Southern Observatory's Very Large 

Telescope. The VLT/FORS2 and CXO/ACIS images were obtained on 2004 

Feb. 18 and March 7, respectively. The Chandra image has red, green, and 

blue color coding for photons in the 0.5-1.5, 1.5-2.4, and 2.4-8.0 keV energy 

bands, respectively. Note the predominance of hard band X-rays from the (blue) 

source 3 = CXO J054613.1-000604 (J2000 coordinates 05h46m13.14s, -

00d06m04.6s), which lies at the apex of McNeil’s Nebula. This source is 

spatially coincident with the IR sources 2MASS J05461313-0006048 and IRAS 

05436-0007 (= LMZ 12), which have been identified with the erupting young 

star now illuminating the nebula [14, 15]. Names (and J2000 coordinates) for 

the other sources in the field are as follows: source 1 = CXO J054619.4-000519 

(05h46m19.47s, -00d05m19.7s; 2MASS J05461946-0005199, LkHα301); 

source 2 = CXO J054618.8-000537 (05h46m18.89s, -00d05m37.9s; 2MASS 

J05461889-0005381); and source 4 = CXO J054611.6-000627 (05h46m11.61s, 

-00d06m27.8s; 2MASS J05461162-0006279). 
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Fig. 3: Chandra X-ray Observatory spectrum of the source associated with 

McNeil’s Nebula. Top: CXO/ACIS spectrum of CXO J054613.1-000604 

obtained 2004 March 7 (points; errors are 1-sigma), with best-fit absorbed, 

optically thin thermal plasma model [30] overlaid (histogram). The best-fit model 

has a temperature TX = 5.6x107 K (with a lower limit of 1.5x107 K at 90% 

confidence, and unbounded upper limit) and intervening absorbing column NH = 

5.7x1022 cm-2 (with a 90% confidence interval of (3.0-10)x1022 cm-2).  Bottom: 

the residuals of the fit, in units of the uncertainties in the individual data points. 

This spectral analysis was performed with XSPEC version 11.3. 
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Table 1. X-ray properties of the erupting young star and nearby, field sources. 

 November 14, 2002 March 7, 2004 March 22, 2004 

# Count ratea 

[cts ks-1] 

Median Eb 

[keV] 

Count ratea 

[cts ks-1] 

Median Eb 

[keV] 

Count ratea 

[cts ks-1] 

Median Eb 

[keV] 

1 8.1 ± 0.4 1.4 ± 0.1 8.7 ± 1.4 1.6 ± 0.2 5.7 ± 1.0 1.9 ± 0.3 

2 32.0 ± 0.8 1.4 ± 0.1 26.2 ± 2.3 1.4 ± 0.1 25.1± 2.2 1.5 ± 0.1 

3c 0.20 ± 0.06 2.5 ± 0.5 10.7 ± 1.4 3.6 ± 0.2 2.2 ± 0.6 2.0 ± 0.3 

4 1.9 ± 0.2 1.7 ± 0.1 5.8 ± 1.1 1.7 ± 0.2 1.4 ± 0.5 1.1 ± 0.4 

a) Count rates and statistical errors within 1.5" radius aperture. Nov. 14, 2002 data obtained in 

55.9 ks effective exposure time with front-illuminated CCD ACIS-S2 [23]; March 7 and 22, 

2004 data obtained in 5.5 ks and 4.9 ks exposure times, respectively, with back-illuminated 

CCD ACIS-S3. ACIS has a pixel size of 0.49 arcsec and the Chandra/ACIS combination is 

sensitive over the energy range 0.3-10 keV. The data were subject to standard processing 

by Chandra X-ray Center (CXC) pipeline software (version 7.1.1), and data reduction and 

analysis was performed using the CXC's CIAO package (version 3.0.2 and CALDB 2.26).  

b) Median energy of source photons within energy range 0.5 keV to 8 keV, and statistical error 

on the median. 

c) Source associated with McNeil’s Nebula. 
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