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Abstract

Over the past decade, the disparity between the value of the cosmic

expansion rate directly determined from measurements of distance and

redshift or instead from the standard ΛCDM cosmological model cali-

brated by measurements from the early Universe, has grown to a level

of significance requiring a solution. Proposed systematic errors are

not supported by the breadth of available data (and “unknown errors”

untestable by lack of definition). Simple theoretical explanations for

this “Hubble tension” that are consistent with the majority of the data

have been surprisingly hard to come by, but in recent years, atten-

tion has focused increasingly on models that alter the early or pre-

recombination physics of ΛCDM as the most feasible. Here, we de-

scribe the nature of this tension, emphasizing recent developments on

the observational side. We then explain why early-Universe solutions

are currently favored and the constraints that any such model must sat-

isfy. We discuss one workable example, early dark energy, and describe

how it can be tested with future measurements. Given an assortment

of more extended recent reviews on specific aspects of the problem,

the discussion is intended to be fairly general and understandable to a

broad audience.
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1. INTRODUCTION

In his “Chronology of the History of Science and Discovery” (1), Isaac Asimov identifies

Hubble’s discovery of the cosmic expansion as one of the two defining events of 20th-century

science (the other being the discovery of the structure of DNA). Interestingly enough,

though, the value Hubble inferred for the expansion rate (the Hubble constant)—the ratio

of the recessional velocity to distance for the galaxies he observed—turned out to be too

high by an order of magnitude, a rate providing less than 2 billion years for the Universe

to have grown to its present size, far smaller than the age of the Earth! This first “Hubble

tension”, defined here as any discrepancy between the locally measured and cosmologically

inferred expansion rate, was resolved with the discovery of two generations of stars and a

consequence of prior measurements intermingling the two.

Determination of the Hubble constant has been a central aim of cosmology ever since,

with measurements differing by almost a factor of two as late as the early 1990s before

reaching a celebrated result of H0 = 72 ± 8 km sec−1 Mpc−1 (2) a 10% state-of-the-art

precision by the new millennium, through use of the Hubble Space Telescope to resolve

Cepheid variables in distant galaxies (later recalibrated to 74 ± 2 (3)). Coupled with the

theoretical expectation of Ωm ∼ 1, the low expansion age implied by these measurements,

still a few Gyr younger than the oldest stars, set off another “Hubble tension” until the

discovery of cosmic acceleration amended the composition and recent expansion history and

the age of the Universe grew comfortably higher.

Cosmology has, however, blossomed over the quarter century since then, resembling

high-energy physics experiments, with huge data sets, sophisticated analyses, careful at-

tention to systematic errors, and a successful standard cosmological model (ΛCDM) with

precisely determined parameters. Still, two decades into the new century, we find ourselves

yet again with a third Hubble tension, smaller in scale than prior ones but highly signif-

icant, a ∼ 8% discrepancy with >∼ 5σ confidence. Each past Hubble tension has taught

us something more interesting than the value of a parameter and a new tension provides

an opportunity for discovery. Will this one (again) auger new astrophysics or fundamental
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physics?

The lower value H0 = 67.4 ± 0.5 km sec−1 Mpc−1 (4) of the Hubble constant is an-

chored by measurements of angular temperature and polarization fluctuations in the cosmic

microwave background (CMB) which calibrate free parameters in the ΛCDM cosmological

model. Similar values are obtained from spatial fluctuations in the galaxy distribution (5, 6)

whose physical scale is calibrated by the CMB, an approach called an “inverse distance lad-

der.” These data map the statistical properties of the distribution of mass to a spectrum

of physical scales set by the ΛCDM cosmological model. Chief of these scales is the “sound

horizon,” the distance a primordial fluctuation can travel at the sound speed in an expand-

ing Universe before its size is frozen when the Universe becomes transparent at z ∼ 1000.

The Hubble constant is one of six parameters that are optimized to find agreement between

this model and the data. Absent the CMB, comparing primordial deuterium abundance

to BBN predicted by the cosmological model in the early Universe provides similar results,

leading to the useful summary that the most precise but indirect measures of the Hubble

constant derived from ΛCDM as calibrated in the pre-recombination or “early” Universe

give values in the range of 67–68 km sec−1 Mpc−1.

A higher range of 70–75 km sec−1 Mpc−1 covers essentially all precise (≤ 5%), recent

“late” Universe measurements of the Hubble constant determined “locally” or directly—

inferred by comparing (as Hubble did) the recessional velocities and distances of galaxies.

The leading approach in terms of community investment of Hubble Space Telescope time,

and most replicated, yields H0 = 73.0 ± 1.0 km sec−1 Mpc−1 (7, 8, 9), near the middle of

the range (see Figures 1 and 2). Here, the galaxy distance is inferred from the apparent

brightness of a “standard candle,” an astronomical source of fixed luminosity or from the

angular size of a “standard rod”, a source of calculable length. While Hubble used Cepheid

variables, supergiant stars whose pulsation period correlates with their luminosity, as stan-

dard candles, current local measurements use a variety of standard candles and rods, but

many rely on Type Ia supernovae, a class of thermonuclear supernovae (stars with degen-

erate matter which approach the Chandrasekhar mass), to measure deep into the Hubble

flow. We will discuss uncertainties in the measurements in the next Section.

The current Hubble tension has persisted while gaining in significance for nearly a

decade, making it hard to ignore. Well-posed proposals of systematic errors in measure-

ments have been tested and are not supported by the data while non-specific suggestions

of measurement “unknown unknowns” are unsatisfactory and by definition, untestable. A

viable explanation is of interest not just to cosmology, but also to physics. The standard cos-

mological model, assembled in recent decades, is remarkably successful, but works only with

ingredients that involve new physics beyond general relativity and the SU(3)×SU(2)×U(1)

Standard Model of elementary-particle physics. The Universe is observed on the largest

distance scales to be quite smooth but with small density fluctuations well described as a

realization of a Gaussian random field with a nearly scale-invariant power spectrum. The

primordial origin of these perturbations, which have large correlation lengths, requires new

physics (which can be very well described in the context of inflation) beyond the Standard

Model. The time evolution of the perturbations in the baryons and in the photons vis-

ible to us as the cosmic microwave background (CMB)—as well as dynamics of galaxies

and galaxy clusters in the Universe today—requires some form of collisionless dark matter

which, again, requires new physics. Moreover, evidence for some negative-pressure dark en-

ergy (e.g., a cosmological constant) comes from supernova measurements (10, 11) and the

detailed characterization of cosmological perturbations and also necessitates new physics.

www.annualreviews.org • H0 and EDE 3



Figure 1

Extended MCMC sampling of the posterior for H0 to measure out to the 5σ confidence level. The

upper panel shows the probability density for the baseline from SH0ES and from the Planck
Collaboration et al. (2020) chains. The bottom panel shows the log of the probability density to

improve the ability to see the tails.

Still, once collisionless dark matter, a cosmological constant, and a nearly scale-invariant

spectrum of primordial perturbations are postulated, all of the data we have on the sta-

tistical properties of perturbations in the early and late Universe can be described by a

model that is parameterized by (i) an overall amplitude for the primordial perturbation

power spectrum; (ii) a power-law index for the power spectrum; (iii) a baryon density; (iv)

a dark-matter density; (v) the Hubble constant; and (vi) a “reionization optical depth,”

which quantifies the fraction of CMB photons that are primordial.

While the Hubble tension looks prima facie to be a breakdown of ΛCDM’s ability

to connect two ends of cosmic time, it does not yield to easily anticipated, new-physics

solutions. In considering the solution space it is important to recognize that ΛCDM plays

two distinct roles in the model-dependent calculation of H0. First the model is calibrated

in its pre-recombination form (z >∼ 1000) by comparison to primordial measurements which

fixes its six free parameters. Second, ΛCDM predicts the expansion history between z ∼
1000 and z ∼ 0 which leads to a prediction for H0 with or without additional refinement of

the model parameters which may come from comparison to low-redshifts measures of the

expansion history. A late-time solution affecting this extrapolation is attractive but appears

less tractable. If the discrepancy were reversed—with a higher value for H0 coming from

the CMB—it could be easily attributed to the nature of dark energy as quintessence-like

(13), where the dark-energy density is slowly decreasing. However, such an explanation

would require, given the larger H0 from local measurements, that dark energy violate the

dominant energy condition, something like a relativistic notion of creating energy from the
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Figure 2

68% confidence-level constraints on H0 from different cosmological probes. From Ref. (12) (based
on Refs. [49, 50]).
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vacuum. Even if we are willing to allow for such an exotic theoretical possibility, though,

such a model is disfavored by galaxy-clustering or high-redshift supernova measurements

which prefer a nearly constant Λ-like dark energy density independent of the primordial

measurements. Neither can the simplest dials on existing dark-matter models be turned to

solve the Hubble tension. Most analyses are done assuming a flat Universe, but allowing

for some nonzero curvature actually drives the CMB-inferred H0 even lower. Workable

solutions, and thus the ones we will focus upon, can be obtained by modifying ΛCDM at

early times and its early cosmic-expansion history. One promising way is to postulate some

sort of “early dark energy” (EDE) (14, 15) that behaves like a cosmological constant before

matter-radiation equality but then decays away faster than radiation afterwards. Recent

CMB measurements, since EDE was proposed, have improved sensitivity to polarization

fluctuations on small angular scales, and may even favor such models over ΛCDM. Still, we

must await future CMB measurements and galaxy surveys to disprove either model.

A vigorous campaign to develop microphysical EDE models is now under way—at the

time of submission of this article, there were on order one new EDE model appearing

on arXiv every week. Most of them repurpose ideas explored earlier in connection with

dark energy and/or inflation, but there are some novelties associated with the coincidence

between the time that EDE becomes dynamical and the epoch of matter-radiation equality.

The machinery to produce precise model predictions is moreover available, and so are the

tools to make detailed comparisons with data sets. As a result, model building proceeds

hand in hand with careful comparisons with ever improving data. Some of the models

suggest entirely new experimental/observational consequences of new EDE physics, which

will hopefully bring new avenues to understanding the Hubble tension. There are also a

slew of independent new techniques for local measurements that will further test the results

of supernova measurements.

Here we will review the Hubble tension and early dark energy at a colloquium level.

There have been far too many developments in measurements and theory in this subject

for us to review them in detail. We choose, therefore, in our discussion of measurements

to focus primarily on recent developments, current questions, and future prospects. The

theory discussion will emphasize fundamental issues and model ingredients, with relevant

calculations presented schematically. We will then describe the new-physics ingredients for

a handful of EDE models.

Fortunately, there are excellent recent and broad reviews on various aspects of the

Hubble tension (16, 17, 18, 19, 20, 21) and the various types of models that have been

invoked to explain it (19, 22). Some recent reviews on (late-time) dark energy (23, 13, 24)

also cover some overlapping issues in theory and cosmological-parameter determination.

2. OBSERVATIONS AND MEASUREMENTS

2.1. Defining the Hubble Constant

The Hubble constant H0 is defined as the constant of proportionality in the relation cz =

H0D between distance D and redshift z in the limit z → 0. For measurements that

necessarily involve sources at z > 0, the linear relation is generalized to

D =
cz

H0

{
1−

[
1 +

q0
2

]
z +

[
1 + q0 +

q2
0

2
− j0

6

]
z2 +O(z3)

}
,
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which follows from a Taylor expansion of the scale factor

a(t) = a0

{
1 +H0 (t− t0)− 1

2
q0 H

2
0 (t− t0)2 +

1

3!
j0 H

3
0 (t− t0)3 +O([t− t0]4)

}
.

with H(t) = +(da/dt)/a the expansion rate at time t; q(t) = −(d2a/dt2) [H(t)]−2 /a the

deceleration parameter; and j(t) = (d3a/dt3) [H(t)]−3 /a the jerk parameter, and so on.

For simplicity these relations are defined without curvature but can be generalized with

curvature. The Hubble “constant” is then the expansion rate H0=H(t0) today (time t0).

We can determine H0 (and q0, j0, etc.) from measurements of distances and redshifts

directly from this definition and independent of the cosmological model.

Redshifts are easily measured from the change in wavelength of observed atomic tran-

sitions (usually emission lines of galaxies) as compared to experimental, laboratory values.

Relative (also called uncalibrated or scale-free) distance measurements at D > 100 Mpc,

where the ∼ 200− 300 km/sec “peculiar” velocities (random velocities relative to the Hub-

ble flow) become negligible, distances are readily obtained from the brightness of Type Ia

supernovae which provide for determination of q0 and j0, while H0 drops out of the cal-

culation (25). The parameters q0 and j0 can also be constrained from other cosmological

data. In either case, the uncertainties in local determinations of H0 from uncertainties in

q0 and j0 are irrelevantly small; a change ∆q0 changes H0 by O(∆q0) in km sec−1 Mpc−1.

Measurement of H0 then requires absolute distance measurements; these must ultimately

be calibrated by geometry and are harder to come by.

2.2. The Local Distance Ladder: Geometry to Cepheids to SN Ia

For reasons related to the homogeneity and luminosity of different classes of astronomical

objects, the most widely supported route for measuring H0 has been to construct a 3-step

distance ladder using geometry to calibrate Cepheid variables followed by SN Ia. Here we

make reference to the specific implementation and most recent iteration of this approach

by the SH0ES Team (9).

Mpc: Megaparsec,

3× 1024 cm, roughly,
the typical spacing

between galaxies

SN Ia: Type IA
supernova, a SN

from thermonuclear

detonation of a
white dwarf when it

exceeds the

Chandrasekhar mass

Cepheid: A Yellow

Supergiant star
pulsating in the

fundamental (radial)

mode whose light
curve period

strongly correlates

to its mass and
luminosity

SH0ES: Supernovae

and H0 for the
Equation of State

HST: Hubble Space

Telescope

WFC3: Wide Field

Camera 3

UVIS/IR: Refers to
the two channels on

WFC3: UV/visible

(200 to 1000 nm)
and infrared (800 to

1700 nm)
Cepheids have been favored as primary distance indicators for more than a century

because they are very luminous (100,000 solar luminosities), extremely precise (3% in dis-

tance per source (26)), easy to identify due to their periodicity (since Leavitt 1912), and

well understood (since Eddington 1917). They are massive, pulsating supergiant stars, over-

shooting hydrostatic equilibrium due to the κ temperature-dependent opacity mechanism

(27). There is a tight coupling between the period of the pulsation (weeks to months),

the mass, and the luminosity of these stars, with the latter inferred empirically from the

former from Cepheids at a common distance. They are also the most consistently calibrated

standard candle, an important issue for reduction of errors, thanks to use of a single, sta-

ble telescope and instrument, HST WFC3 UVIS/IR used for all measurements in local SN

Ia hosts and in three geometric calibrators of Cepheid luminosities: the megamaser host

NGC4258 (28), Milky Way parallaxes from the ESA Gaia mission (29), and the LMC (26)

(via detached eclipsing binaries) with a precision of 1.5%, 1.0% and 1.2%, respectively.

Milky Way parallaxes from the ESA Gaia mission in particular and through successive

iterations, have become the best source of geometric distance measurements, moving the

calibration of Cepheids ahead of other stellar distance indicators and even allowing for addi-

tional, self-calibration of ESA Gaia parallax errors (30). Near-infrared (NIR) observations

of Cepheids are used to mitigate the impact of uncertainties related to dust which reduces

www.annualreviews.org • H0 and EDE 7



systematic uncertainties relative to past, optical-only data. Just recently, a serendipitous

early James Webb Space Telescope (JWST) observation of NGC 1365, a nearby galaxy on

the Cepheid-supernova calibration path allowed a measurement of the near-infrared Cepheid

period-luminosity relation, with JWST’s improved resolution (31). The results are consis-

tent with results from HST, but show that future JWST observations will be an important

tool in the increasingly precise characterization of Cepheids.

SN Ia are rarer than Cepheids (one per galaxy per century vs hundreds per galaxy at

any time), hence none have been near enough for a parallax measurement in 400 years,

but they are far more luminous (billions of solar luminosities). Standardizeable to 6% in

distance per source, they have no rival in their ability to witness cosmic expansion. In the

past, the uncertainty in H0 was limited by the rarity of SN Ia whose hosts were in range

of Cepheids (at D ≤ 40 Mpc, about one per year) but better instruments on HST and

persistence has produced a complete sample of forty-two well-observed, prototypical SN Ia

from the last four decades (the era of digital photometry). (The redshifts of these nearby

SN Ia hosts do not enter the calculation of H0). Great efforts have been made to calibrate

and standardize these consistently with the thousands of SN Ia in the Hubble flow (25, 32)

(typically at 0.02 < z < 0.15), including the modeling of data covariance. The result is a

measurement from the SH0ES and Pantheon+ data of H0 = 73.04± 1.04 km sec−1 Mpc−1

including systematic uncertainties; see Figure 3.

This result has passed a wide range of null tests and has been replicated from the

published Cepheid photometry (33, 34) and the Cepheid photometry has been replicated

independently (35). Sixty-seven variants of the baseline analysis, see Figure 4, demonstrate

it is difficult to move the central value below ∼ 72.5 or above ∼ 73.5 (see Ref. (30) for

discussion of uncertainties). The relation between Cepheid metallicity and luminosity, a past

source of uncertainty, has been well-calibrated (36), and due to the breadth of anchors, has

little effect on H0 in any case. Well-posed, experimental challenges to these measurements

have been extensively studied and are certain to continue but the present evidence does

not support a significant challenge to the conclusions of a highly significant tension. The

comparison to Planck with ΛCDM yields the strongest evidence for the Hubble tension at

5σ, or 5.3σ including new calibrations from Gaia clusters (37).

SBFs:
Surface-brightness
fluctuations

TRGB: Tip of the

red-giant branch

AGB:
Asymptotic-giant

branch (like red
giants, but having

burned their helium

cores to carbon or
heavier elements)

SN-II: Type II

supernova, a
core-collapse SN

distinguished by

hydrogen in its
spectrum

CCHP:
Chicago-Carnegie
Hubble Project

EDD: Extragalactic

Distance Database

Nevertheless, it is important to test the individual rungs of this ladder which can be

done with other independent distant indicators, e.g., SBFs, TRGB, SN II, Miras, etc. (see

figure 2), which presents a composite view of a large sample of local-measurements results).

For reference, to calibrate the nearest SN Ia, a distance indicator needs to reach galaxies at

D > 10 Mpc. To well-calibrate the Hubble flow, a distance indicator needs to reach D ∼ 100

Mpc, so that O(1000 km sec−1) peculiar velocities are small compared to the Hubble-flow

velocity. To be calibrated by parallax the distance indicator needs to be present in the

Milky Way.

2.3. Other Local measurements

2.3.1. Tip of the Red Giant Branch (TRGB). When a main-sequence star has burned all

the hydrogen in its core to helium, the star continues to burn hydrogen in a shell around

the core, thus slowly increasing the helium-core mass. During this time, the star becomes

cooler but brighter, a process that continues until the mass, and thus temperature, of the

helium core becomes large enough (about 0.5 solar masses) to ignite helium burning to

carbon. The luminosity of the I-band (in the infrared) is seen to be insensitive to the star’s

8 Kamionkowski and Riess



Figure 3

The cosmic distance ladder used by SH0ES to infer H0. The luminosities of nearby Cepheid

variables are calibrated to parallaxes. Supernova luminosities are then calibrated to Cepheid
luminosities at larger distances. The Hubble constant is then inferred from the brightnesses of

more distant supernovae.

metallicity and mass, and so they can be used as a standard candle. Since the TRGB

luminosity is 10 times fainter than long-period Cepheids, it is more limited in distance to

D < 20 Mpc. It has, however, been used in lieu of Cepheid variables to calibrate nearby

Type Ia supernovae.

In practice the location of the tip in the color-magnitude diagram of stars often appears

“fuzzy” due to the presence of AGB stars which have the same color as RGB stars but

are both brighter and fainter, reducing the contrast and blurring the location of the tip;

see Figure 5 for an illustration of the TRGB measurement process. Varying degrees of

contamination of the old, metal-poor halo tip by new star formation or crowding may be

partially mitigated by careful selection of regions to analyze (38) but leave some ambiguity

about the location of the tip which is field dependent. Techniques to measure the tip include

www.annualreviews.org • H0 and EDE 9



Figure 4

Values of H0 inferred by SH0ES under different assumptions and analyses. The ±1σ vertical
dotted lines indicate the statistical error in the baseline result shown at the bottom. H0 is given

in units of km sec−1 Mpc−1.

10 Kamionkowski and Riess



Figure 5

This Figure, from Wu et al 2022, illustrates the steps involved in the inference of distances from
the tip of the red giant branch and some of the metrics used to judge the quality of the result.

The tip contrast R is the most important of these.

Sobel edge detection, parameteric luminosity function fitting, and maximum likelihood

methods. The TRGB, like Cepheids, are not generally used to measure H0 directly, but

contribute to such a measurement by calibrating longer range indicators.

A direct comparison of Cepheids and TRGB and distance measures can be made in

seven SN Ia hosts (both deriving calibration from the same geometric distance measure in

NGC 4258) and these yield agreement to better than 2% in the mean (30). However, litera-

ture differences in the determination of H0 involving TRGB are seen to arise from the other

two rungs; the (first) calibration rung and a (third) SN Ia rung. There are several mea-

sures of H0 that use TRGB including the Chicago-Carnegie Hubble Project (CCHP) (39)

(70± 2), the Extragalactic Distance Database EDD (40) (71.5± 2.0) which connect to SN

Ia, and a measure that calibrates surface brightness fluctuations with TRGB (41) (73± 3).

The main source of differences in the CCHP and EDD TRGB studies come from differences

in the determination of the TRGB in NGC 4258 which differ by 1.5 km sec−1 Mpc−1 (in

H0). These groups use different fields in NGC 4258 and more work may elucidate how these

fields compare to the fields used to measure TRGB around SN Ia hosts. Parallaxes from

Gaia of field stars (42) or the nearby, massive globular cluster, Ω Centauri (43) may also

aid TRGB calibration (see Figure 6 in (42) for a summary of recent TRGB calibrations).

The lower value of H0 from the CCHP study also partially sources from differences in its

measurement of the Hubble flow from SN Ia; accounting for local peculiar motions (44) and

cross-calibration of SN samples (45) would raise that H0 by ∼ 1.5 km sec−1 Mpc−1 (or

likewise we find removing these steps in the SH0ES Team measurement lowers that mea-

surement to 71.8 km sec−1 Mpc−1). These are small differences, important to understand

to reach a 1% uncertainty. However, as seen in (12) Figure 2, all local measures at this

precision level are above the 67.4 ±0.5 km sec−1 Mpc−1 expectation (Planck) while none

www.annualreviews.org • H0 and EDE 11



of the local measures are in tension with each other (at > 1.5 σ). Even the lowest value of

these measures is above the 4σ confidence level of Planck.

2.3.2. Gravitational waves. The gravitational-wave (GW) signal from a merging neutron-

star binary can be used to determine the Hubble parameter (46). The spindown frequency

and GW amplitude can be used to determine the distance to the source, as long as the

inclination of the binary is known. The inclination can in principle be constrained with

knowledge of the GW polarization. Even without polarization, the distribution of inclina-

tion angles can be averaged over in multiple events. This measurement requires, though, a

redshift obtained from an electromagnetic counterpart.

This technique was implemented with the detection (47, 48, 49) of a gravitational-wave

signal consistent with a neutron-star–neutron-star or neutron-star–black hole merger at

a distance ∼ 40 Mpc, as well as detection of an associated soft gamma-ray burst and a

slew of subsequent electromagnetic observations. This event, GW170817, then provided

a measurement H0 = 74+16
−8 km sec−1 Mpc−1 (68% CL) of the Hubble parameter (50),

but the associated uncertainties—dominated by that for the inclination angle—were too

large to be of value. Subsequent detection and modeling of a late-time radio jet from

the merger then constrained the inclination angle and thus improved the measurement to

H0 = 70.3+5.3
−5.0 km sec−1 Mpc−1. The error reduction is, however, accompanied possibly by

radio-jet modeling uncertainties. In addition, this event at D ∼ 40 Mpc (z ∼ 0.01) was too

close to provide a clean measure of the Hubble flow with peculiar velocities producing an 8%

uncertainty. Given the expected increase over the next decade in detection range, as well as

improved characterization from multiple observatories, a robust <∼ 2% GW measurement

of the Hubble parameter may be possible in the coming decade.

It may also be possible to constrain H0 from GW events without optical counterparts.

The idea of this “statistical-siren” or “dark-siren” approach is that if the origin of the

GW signal can be localized on the sky, then a catalog of candidate host galaxies can be

obtained. Although H0 cannot be determined from this method, the redshift distribution

of the candidate hosts translates to a probability distribution for H0 (51). By combining

results from a large number of such events, the possible values of H0 can be narrowed.

The LIGO/Virgo and Dark Energy Survey (DES) Collaborations applied this technique in

Ref. (52) to GW170814, a particularly bright and reasonably well localized event, although

the H0 constraints from this initial foray are not yet significant.

2.3.3. Mira variables. Mira variables are pulsating, low-mass, intermediate age (AGB) stars

with great luminosity, comparable to Cepheids in the near-infrared. The oxygen-rich sub-

type has a simple, linear period-luminosity relation. However, these objects are more chal-

lenging to find and measure than Cepheids because their periods are far longer, hundreds to

a thousand days, and there are contaminating stars in the same period range (Carbon-rich

Miras and long-period-variables) which must be distinguished using light-curve amplitudes

and colors. First attempts to use Miras to supplant Cepheids or TRGB are promising (53),

but the sample size is small.

2.3.4. Surface Brightness Fluctuations (SBF). This technique determines distances to

galaxies by the surface-brightness fluctuations that arise from the finite number of stars

in the galaxy (54). The electromagnetic energy flux F from a given galaxy is related to

its distance D by F ∝ D2, and the surface brightness is ∝ D−2. If the galaxy is resolved,
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then there will be pixel-to-pixel variations in the surface brightness, induced by the finite

number of stars contributing to the flux in any given pixel, with root-variance ∝ D−1. This

technique yields distances with precision approaching SN Ia but cannot reach the same

distances. Nevertheless, they offer an important alternative to SN Ia and a recent, state-

of-the-art study of SBF using HST in the NIR from (41, 55) yields similar results as SN Ia,

with H0 ∼ 73.3± 2.5 with the same result whether calibrated by Cepheids or TRGB.

2.3.5. Masers. Water masers in Keplerian motion around supermassive black holes in the

centers of galaxies can be observed in the radio using VLBI. By tracking proper motions

and accelerations, a purely geometric distance can be measured to the maser host. However,

such objects are rare due to the requirement of edge-on alignment of the inner accretion disk

with our line of sight coupled with the need for an optimal density profile of the disk. The

Maser Cosmology Project (MCP) has measured 6 such systems in the Hubble flow reported

by Ref. (28) which yields H0 = 74 ± 3, independent of any previously reviewed rungs.

While this approach is limited in precision due to the small samples and limited resolution

of the galaxy nucleus, future observations of these same maser hosts with the Event Horizon

Telescope (56) could yield a dramatic improvement and are highly anticipated.

2.4. Model-dependent local measurements

We now review several additional techniques to determine the Hubble constant that we

refer to as “model-dependent” because they require additional modeling: For gravitational

lensing, it is a model for the lens mass; for ages/aging, it is a model for stellar evolution.

2.4.1. Strong gravitational lensing. If a given time-varying cosmological source is multiply

lensed by a massive foreground object, there will be time delays between the light curves

observed in the different images. These time delays depend on the angular-diameter dis-

tances to the lens and source, thus providing a route to determination of H0 (57). Quasars

have proved to be ideal targets for this measurement as they are bright, time-variable, and

long-lived (58, 59, 60, 61). In 2019, the H0liCOW Collaboration reported H0 = 73.3+1.7
−1.8

km sec−1 Mpc−1from an analysis of 6 strongly lensed quasars with time delays (62). One

issue in the measurement is the mass-sheet degeneracy (63): a flat mass distribution in the

plane along the line of sight can add to the time delay without affecting the image locations

and brightnesses. In practice, the mass distribution of the lens must be constrained with

dynamical constraints to the lens mass, thus introducing new uncertain astrophysics into

the measurement. As an illustration of the possible impact, a subsequent analysis of the

H0liCOW quasars (with a seventh added) relaxing the assumption of a conventional galaxy

mass profile for the lenses (NFW or power-law) in one of two different ways obtained values

consistent with either end of the H0 discrepancy and with larger error bars (64). So if

lenses share the same mass profiles as local, well-studied elliptical galaxies, lensing con-

forms with the other local values, and if it does not, the way in which it does not becomes

the leading source of uncertainty. The strong-lensing determination of H0 is now being

advanced by the TDCOSMO Collaboration (65) with new systems, new analysis pipelines,

and careful attention to identification and mitigation of systematic effects and astrophysical

uncertainties.

ΛCDM: The
standard

cosmological model

with dark energy
taken to be a

cosmological

constant

wCDM: The
cosmological model

with dark energy
with an

equation-of-state
parameter w

LIGO: Laser

Interferometric
Gravitational-Wave

Observatory

Virgo: The European
gravitational-wave

observatory

DES: Dark-Energy
Survey
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Figure 6

The 1σ allowed parameter regions in triads corresponding to the age of the Universe and the

Hubble constant (upper left); the sound horizon at radiation drag and the reduced Hubble
constant (bottom left); and the total matter density and the square of the reduced Hubble

constant (bottom right). Note that all points in each panel sum to 0, while the ticks in the axes

determine the direction of equal values for each axis. From Ref. (66).

2.4.2. Ages and Aging. The expansion rate H(z) at any given redshift z is inversely propor-

tional to the ratio of the time interval ∆t associated with some given redshift interval ∆z.

Ref. (67) thus proposed using differential stellar ages to determine the expansion history,

and at low redshifts, the Hubble parameter H0. This type of measurement currently is most

precise at a redshift z ' 0.45 (68, 69). This measurement is subject to stellar-astrophysics

uncertainties which have only recently been well-studied by Refs. (70, 71). Folding these

in constrains H0 to 67.8+8.7
−7.2 and 66.5 ± 5.4 km sec−1 Mpc−1, respectively, for a generic

open wCDM and for a flat ΛCDM cosmology, results which are not very constraining in

the present landscape.

The age of the Universe also provides a constraint to H0. In a wCDM cosmology with

matter density Ωm and dark-energy equation-of-state parameter w, it is

t0 =
1

H0

∫ ∞
0

dz

(1 + z)
√

Ωm(1 + z)3 + (1− Ωm)−3(1+w)
. 1.
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The oldest (observable) stars in the Universe are found in low-metallicity (thus formed

from nearly primordial gas) globular clusters in the Milky Way halo. The stars in these

globular clusters have nearly uniform metallicities and exhibit a clear main sequence in

their color-magnitude diagrams, thus suggesting a uniform burst of star formation. The

age is determined by fitting main-sequence isochrones from stellar-evolution models to the

observed color-magnitude diagram, as the main sequence is the best understood phase of

stellar evolution. Recent parallaxes from Gaia have reduced the uncertainties in the stellar

luminosity and thus in the inferred ages. Using ages from 22 Milky Way globular clusters

(72), Ref. (73) obtains a value H0 = 71.0± 2.7 km sec−1 Mpc−1. This provides a distance-

ladder independent measurement and thus complements other H0 determinations. The

degeneracies with other cosmological parameters also complement those of CMB and local

measurements, as shown in Figure 6 (66).

3. EARLY-UNIVERSE MEASURES

3.1. The sound horizon, the cosmic microwave background, and large-scale
structure

3.1.1. The early Universe. The density of the early Universe (“early” here means within

the first ∼ 400, 000 years of the Universe, before the CMB photons last scattered) was

the same to <∼ 10−5 everywhere. It consisted of photons, baryons (∼ 75% protons by

weight, ∼ 25% alpha particles, and electrons), all three neutrino mass eigenstates, and

dark matter. The cosmological constant (or other form of dark energy) was dynamically

insignificant. Efficient electron-photon scattering implies that the photons and baryons

comprised one tightly coupled baryon-photon fluid. The neutrinos were non-interacting

(from a few seconds after the Big Bang) but had a thermal velocity distribution with a

temperature ∼ 0.7 times the photon temperature. The dark matter is assumed to be

entirely collisionless, an assumption verified by increasingly constraining null searches for

dark-matter interactions with baryons, photons, neutrinos, or itself.

The primordial Universe was also populated by adiabatic density perturbations well

described as a realization of a gaussian random field with power spectrum P (k) ∝ kns as a

function of wavenumber k. Here, “adiabatic” implies that the fractional density perturba-

tion in each species was equivalent; i.e., the baryon:photon:DM:neutrino ratio was the same

everywhere. The scalar spectral index ns is determined empirically to be ns ' 0.96. The

characteristics of this density field—i.e., ns is close to, but not precisely equal to, unity;

the adiabaticity; and gaussianity—are all consistent with the simplest single-field slow-roll

models of inflation. The details of inflation (or even whether it ever occurred) are not rele-

vant to the Hubble tension—we can simply take the flat Universe and nearly scale-invariant

spectrum of adiabatic perturbations as empirical facts.

3.1.2. The sound horizon in the baryon-photon fluid and baryon acoustic oscillations .

Consider a Dirac-delta-function adiabatic overdensity of matter at some particular point

in an otherwise perfectly homogeneous early Universe. The pressure in the baryon-photon

fluid associated with this overdensity drives a shock wave that expands at the sound speed

cs of the baryon-photon fluid (see Figure 10 in Ref. (24)). Since the energy density at these

early times is dominated by the photons, this sound speed cs is just a bit smaller than c/
√

3,

where c is the speed of light. When photons and baryons decouple, at a time tls ' 400, 000

years after the Big Bang (when the plasma temperature falls to T <∼ eV allowing electrons
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to combine with nuclei), the shock-induced overdensity in the baryon-photon fluid has a

radius ∼ cstls.
The solution to the fluid equations with this Dirac-delta-function initial condition pro-

vides the Green’s function for the time evolution of primordial perturbations. When it is

convolved with the primordial mass distribution, a realization of a random field, it pro-

vides the two-point correlation function at some later time. Thus, the two-point correlation

function for the baryon density—and thus the total-matter density, given that baryons con-

stitute ∼ 1/5 of the total matter density—has a bump at a comoving distance given by the

sound horizon at matter-radiation equality. This bump shows up in the galaxy autocorrela-

tion function at a distance ∼ 150 Mpc. The relatively sharp feature in configuration space

then gives rise to oscillatory structures in the Fourier domain. These are the celebrated

baryon acoustic oscillations in the matter power spectrum.

3.1.3. H0 from acoustic oscillations in the CMB power spectrum. These oscillations also

appear as the acoustic peaks in the angular power spectrum Cl of the cosmic microwave

background, since the photon density traces the baryon density at the time, ∼ 400, 000 years

after the Big Bang, the photons are released. In 1995, Ref. (74) argued that measurement

of these acoustic peaks could be used to determine the Hubble constant, along with the

values of other cosmological parameters, by comparing theoretical calculations of Cl with

measurements. The way that the Hubble constant comes out of this black box can be

understood heuristically, however.

The multipole moment ls of the first acoustic peak determines the angle subtended

by the sound horizon at the surface of last scatter, given the correspondence `s ' 2/θs
between the angular variation θ of a spherical harmonic of multipole l. The angle subtended

by the sound horizon is θs = rs/DA, where DA is the angular-diameter distance to the

CMB surface of last scatter, and rs ∼ cstdec is the sound horizon. The parameter θs =

(1.04109±0.00030)×10−2 is the most precisely determined parameter extracted from CMB

measurements, determined to roughly one part in 104.

More precisely, the sound horizon is obtained by integrating the sound speed cs(t) over

time from the Big Bang to recombination. The comoving sound horizon can be represented

by an integral,

rs =

∫ ∞
zls

cs(z) dz

H(z)
=

c√
3Hls

∫ ∞
zls

dz

[ρ(z)/ρ(zls)]
1/2 (1 +R)1/2

, 2.

over redshift z. Here, zls ' 1080 is the redshift at which CMB photons last scatter, cs(z) =

c [3(1 +R)]−1/2 is the sound speed of the photon-baryon fluid, with R = (3/4)(ωb/ωγ)/(1+

z), and ρ(z) is the total energy density at redshift z. Here, ωb = Ωbh
2 is the current physical

baryon density (today), where h ≡ H0/(100 km sec−1 Mpc−1) is a dimensionless Hubble

constant. This ωb is determined by the higher-peak structure in the CMB power spectrum

far more precisely than Ωb or H0 separately. Planck’s ΛCDM value is ωb = 0.0224±0.0001.

At last scattering R ∼ 0.5 and it is smaller at higher redshifts. And ωγ = 2.47 × 10−5 is

the physical photon energy density (75). The expansion rate at last scattering is

Hls = 100 km sec−1 Mpc−1 ω1/2
r (1 + zls)

2

√
1 +

ωm
ωr

1

1 + zls
, 3.

where ωm = Ωmh
2 is the physical nonrelativistic-matter density today—this, again, is

fixed fairly precisely by the higher-peak structure in the CMB; Planck’s ΛCDM value is
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ωm = 0.142± 0.001. In the standard cosmological model, the early-Universe energy density

is ρ(z) ∝ ωm(1 + z)3 + ωr(1 + z)4. The physical radiation density is

ωr =

[
1 +

7

8
Neff

(
4

11

)4/3
]
ωγ , 4.

where the second term accounts for additional nonrelativistic degrees of freedom. In the

standard cosmological model, these include the three neutrino mass eigenstates, and Neff =

3.06 differs slightly from 3 because of the details of neutrino decoupling (76).

The (comoving) angular-diameter distance to the surface of last scatter is then an inte-

gral,

DA =
c

H0

∫ zls

0

dz

[ρ(z)/ρ0]1/2
, 5.

from recombination until the current time t0 when the total energy density is ρ0. The

denominator here is ρ(z)/ρ0 = Ωm(1 + z)3 + (1 − Ωm)(1 + z)−3(1+w) in the standard

cosmological model, with a dark-energy equation-of-state parameter w. The cosmological

constant corresponds to w = −1.

From θs = rs/DA, we infer a Hubble constant,

H0 =
√

3Hlsθs

∫ zls
0

dz [ρ(z)/ρ0]−1/2∫∞
zls
dz [ρ(z)/ρ(zls)]

−1/2 (1 +R)−1/2
, 6.

from the CMB. This is a function of ωb through its appearance in R. There is a de-

pendence on ωm through its appearance in ρ(z)/ρ(zls) at early times and in Hls. There

is also a dependence on ωm through the appearance of Ωm = ωm/h
2 in ρ(z) at late

times. Thus, strictly speaking, equation 6 is an implicit equation for H0, given that

h = H0/(100km sec−1 Mpc−1) appears and in the right-hand side. There is a depen-

dence on ωγ in the R and in the expression for ωr, which also depends on Neff . The

dependence on ωr comes about in Hls and in ρ(z) at early times. The redshift zls ' 1080 of

the last-scattering surface corresponds to the time when the rate for a photon to Thomson

scatter from free electrons—which are becoming scarce as they become bound into hydrogen

atoms—becomes smaller than the expansion rate. There is some dependence of zls on ωb
and ωm that is taken into account in detailed analyses but is too small to be relevant for

the Hubble tension.

In practice, all of the unknown cosmological parameters are determined simultaneously

by fitting precise numerical calculations of CMB power spectra to data. Still, ωm and ωb
are determined primarily by characteristics in the CMB power spectrum such as the Silk

damping at higher l and the relative heights of the even- and odd-numbered peaks. The

Hubble constant then follows from equation 6. Through numerical differentiation of this

expression, it can be found that the Hubble constant varies as (∆H/H0) ' 0.1 (∆ωb/ωb)

for small changes ∆ωb to the baryon density (holding all other parameters fixed) and with

ωm as (∆H/H0) ' −0.77 (∆ωm/ωm) (keeping Ωm = ωm/h
2). This equation also illustrates

how some simple modifications to the standard assumptions might affect the results. For

example, if the number Neff of relativistic degrees of freedom is increased, then the radiation

density ωr is accordingly increased leading to a higher Hls and thus a higher H0. Alter-

natively, if we take w < −1, then the integral in the numerator of equation 6 is increased,

thus leading to a higher H0.

www.annualreviews.org • H0 and EDE 17



3.1.4. CMB results. The first effort to determine H0 from the CMB was in 2000 (77),

but the results were not constraining because these initial measurements lacked enough

information about the higher peaks in the CMB power spectrum to fix ωm and ωb. This

was accomplished with NASA’s Wilkinson Anisotropy Probe (WMAP), which arrived at

H0 = 69.3 ± 0.8 km sec−1 Mpc−1 (78) for their final mission value for the Hubble pa-

rameter (improving upon their first-year result, H0 = 73 ± 5 km sec−1 Mpc−1 (79)).1

Subsequently, the European Space Agency’s Planck satellite (4) provided power spectra to

multipole moments ` ∼ 2500, as opposed to ` ∼ 800 from WMAP, finding H0 = 67.4± 0.5

km sec−1 Mpc−1. These measurements have then been complemented at even smaller an-

gular scales by the ACT and SPT Collaborations, which arrive at similar values of H0 with
<∼ km sec−1 Mpc−1 errors (80, 81).

3.1.5. Galaxy surveys and baryon acoustic oscillations. The sound horizon appears as a

bump in the galaxy autocorrelation function at a distance scale ∼ 150 Mpc. In a galaxy-

redshift survey, galaxy locations are parameterized by their position on the sky and by

their redshift z, a proxy for the line-of-sight distance in the limit that peculiar velocities

can be neglected. A pair of galaxies at similar redshift and some fixed angular separation

have a physical separation proportional to the angular-diameter distance DA(z), which is

inversely proportional to H0 and has a dependence on Ωm; cf., equation 1. A pair of galaxies

along a given line of sight separated in redshift by ∆z have a physical separation inversely

proportional to the expansion rate H(z) = H0

√
Ωm(1 + z)3 + (1− Ω). To provide some

indication of the state of the art, the transverse and radial BAO scales were measured in

BOSS to ∼ 1.6% and ∼ 2.7% in redshift bins of width ∆z ∼ 0.25 (82). The degeneracy

between H0 and Ωm in H(z) or DA(z) is different at high and low redshifts, and so can be

broken by combining BAO measurements at different redshifts (e.g., Figure 5 in Ref. (5)),

and the BAO measurements now span the range 0.15 <∼ z <∼ 3. Using the sound horizon

inferred either from the CMB or from the value obtained by fixing the baryon density from

big-bang nucleosynthesis then allows a determination of the Hubble parameter with a similar

error. In practice, galaxy-survey analyses typically add to this “pure-BAO” measurement

information from the correlation-function shape and its time evolution, and then combine

with constraints to cosmological parameters from the CMB, weak gravitational lensing of

galaxies or the CMB, or other measurements (see, e.g., Figure 20 in Ref. (6) for a comparison

of the constraints derived under various assumptions). Currently such BAO+ measurements

provide (assuming a sound horizon determined from the CMB) H0 values consistent with

the CMB value and with errors <∼ km sec−1 Mpc−1 (6, 5).

3.1.6. Distance scale of matter-radiation equality. The Hubble parameter can also con-

strained by the wavenumber keq of matter-radiation equality obtained from galaxy sur-

veys. The primordial linear-theory matter power spectrum P (k) transitions from its large-

wavelength (k → 0) behavior P (k) ∝ kns (with ns ' 0.96 the scalar spectral index) to

P (k) ∝ kns−3 at k → ∞ at a wavenumber keq corresponding to the mode that enters

the horizon at matter-radiation equality. Given the rough coincidence between this dis-

1Incidentally, WMAP’s ∼ 1% measurement of H0 improved upon the ∼ 10% forecast in Ref. (74)
because WMAP’s capabilities turned out to be better than anticipated in that work, but also because
the acoustic-peak amplitudes turned out to be higher than expected with 1995 best-fit cosmological
parameters.

18 Kamionkowski and Riess



tance scale and those corresponding to the sound horizon, the BAO wiggles in the power

spectrum must be modeled out. Once they have been subtracted, though, the technique

provides a sound-horizon–independent measurement of the Hubble parameter. This is the

idea behind the ShapeFit algorithm (83) which in a preliminary application to BOSS data

finds a low H0. It is also the approach in Ref. (84) which obtains a value H0 = 64.8+2.2
−2.5

km sec−1 Mpc−1. However, this measurement assumes the standard ΛCDM power spec-

trum. If, however, the early expansion history is changed in a manner suggested by early

dark energy, then, as discussed below, the Hubble parameter inferred from this measurement

is raised to a value consistent with the local SH0ES measurement (85).

4. THEORY AND MODELS

4.1. Early- versus late-time solutions

Barring a combination of systematics that address multiple types of observations, the Hub-

ble tension implies some new physics beyond the ingredients (collisionless dark matter, a

cosmological constant, and Standard Model interactions for baryons/photons) found in the

standard cosmological model. Given that local measurements of the Hubble constant are

fairly straightforward, the aim of most solutions to the Hubble tension is to introduce new

physics that increases the value of H0 inferred from the CMB.

These solutions are typically categorized as “late time” or “early time,” a classification

that can be understood from equation 5. Late-time solutions postulate that the energy

density in the post-recombination Universe is smaller than in the standard model, holding

the current density fixed: i.e., ρ(z)/ρ0(z) ≤ [ρ(z)/ρ0(z)]standard; cf. equation 6. This then

increases the comoving distance to the surface of last scatter and thus leads to a larger

H0. Early-time solutions postulate that the energy density is somehow increased before

recombination so that the sound horizon at recombination is decreased. We will also discuss

models that decrease the sound horizon by changing the physics of the baryon-photon fluid.

4.1.1. Late-time solutions. Given the plethora of models and the continued inventiveness

of theorists, care should be taken in making blanket statements. Still, there are theoretical

reasons that make late-time solutions unpalatable and empirical constraints that make them

elusive. A late-time solution requires that the energy density at times between decoupling

and now is smaller than that in the standard model, but keeping the energy density today

fixed (86). Given that the scaling of the radiation and matter densities with redshift is

known, this requires some exotic matter whose energy density increases with time. This is

most easily accomplished by postulating that the cosmological constant is a phantom field

(87), a fluid with an equation-of-state parameter w = p/ρ < −1, where p and ρ are here

the dark-energy pressure and energy density. This, however, implies a fluid that violates

the strong energy condition; i.e., it effectively creates energy out of nowhere. This seems

strange, but is this what the Hubble tension is telling us? Even if we are willing to accept a

violation of the strong energy condition, though, such models are difficult to reconcile with

the sound horizon seen in the galaxy correlation function (88, 89). They are also difficult to

reconcile with constraints to the equation-of-state parameter w inferred recently from SNe

Ia at high redshifts (25).
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Figure 7

The evolution of the energy densities of radiation, nonrelativistic matter (baryons and cold dark
matter, and the cosmological constant as a function of redshift (so time increases to the left, with

the Big Bang far off to the right and today off to the left.) Also shown is the energy density

postulated for early dark energy (EDE). The bottom panel shows the fractional contribution of
EDE to the total energy density. The EDE curves are schematic—the key point is that it

contributes ∼ 10% a bit before recombination but is otherwise dynamically unimportant. Figure

courtesy T. Karwal.

4.2. Early dark energy

The basic idea behind early dark energy (EDE) is to postulate some exotic fluid that

contributes ∼ 10% of the total energy density of the Universe briefly before recombination

and then has an energy density that decays faster than radiation at late time, so that

it leaves the late evolution of the Universe unchanged. This increases ρ(z)/ρ(zls) in the

denominator of equation 6, thus leading to a higher H0. Although the basic idea is simple,

specific models are highly constrained by the very well measured structure of the high-`

peaks in the CMB power spectra. Fourier modes of the density field that correspond to

the highest multipole moments (` ∼ 3000) probed by current measurements entered the

cosmological horizon and became dynamical at a redshift z ∼ 106, when the Universe was

only ∼yr old. The measured CMB power spectrum thus constrains the expansion history

to far earlier times that the time of last scattering. Moreover, a fluid with a density that

evolves with time implies, for a relativistically-invariant theory, the possibility of spatial

fluctuations in the EDE energy density. This, along with the already complicated interplay

between baryon-photon acoustic waves, dark matter, neutrinos, and the gravitational field,

implies that any physical model for EDE will be highly constrained.

Even so, it was found Ref. (15) that physical models of EDE could resolve the Hubble
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Figure 8

Likelihood contours from Ref. (90) for ΛCDM and EDE in a subset of the 9-dimensional

parameter space. These are likelihoods for the model given data from CMB and large-scale
structure measurements as of late 2018. The 9 parameters include the 6 ΛCDM parameters

(Ωm, h, As,Ωb, ns, τ) along with three EDE parameters: the fractional contribution fede(ac) to

the total cosmic density at the scale factor ac (normalized to unity today) at which the this
fractional density peaks, and a third parameter which quantifies the sharpness of the transition of

EDE from its early-time constant-density behavior to its later decay. Each panel shows the

likelihood contours in a given two-dimensional slice of the full parameter space, after
marginalizing over the other 7 parameters. At the top of each column is the likelihood for the

given parameter after marginalizing over all other parameters. The gray bands and curves
indicate the likelihoods for H0 from local measurements The orange contours show the standard
ΛCDM results and indicate the preference of CMB/LSS data for a low Hubble parameter. The

other three sets of contours describe EDE models in which the EDE decays with scale factor a at
late times as a−6n/(n+1). It is seen that EDE expands the allowed parameter space to regions

that overlap the local values of H0. Although it cannot be inferred from the Figure, it can be

checked that the regions of the EDE parameter space that accommodate a larger H0 do so with a
reduced-χ2 similar to that for the best-fit ΛCDM model.
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tension. Figure 8 shows the results reported there for EDE models in which the EDE

density decays with scale factor a at late times as a−6n/(n+1). As can be seen from the H0

likelihood distribution, the addition of EDE allowed (as of late 2018) for larger values of

H0, that overlap the range of values allowed by local measurements, to be inferred from

CMB/LSS data. Moreover, the best-fit EDE model had a similar reduced-χ2 as the best-fit

ΛCDM model. The results shown here are for oscillating-field and slow-roll models for EDE,

both of which can be described within the required precisions with the generalized-dark-

matter formalism.

4.2.1. Oscillating-field models. Oscillating scalar fields underly many of the EDE models

that have been explored. Here, a scalar field φ is postulated with a confining potential (91),

V (φ) = Λ4
ede [1− cos(φ/fede)]n , 7.

with an energy scale Λede ∼eV so that the energy density is in the ballpark of that of the

Universe before recombination. Although this potential was postulated (91) in an ad hoc

fashion, Ref. (92) argued that it may arise in string theory. If the initial field value is

φ/f ∼ π, then the field is initially frozen and behaves gravitationally like a cosmological

constant. Later, though, the field begins to oscillate about its minimum with an equation-

of-state parameter wede = (n − 1)/(n + 1) and an energy density that decays with scale

factor a as ρede ∝ a−6n/(n+1) (93, 94). Thus, for n > 1, the EDE energy density decays

faster than that of radiation, as needed. Another similar possibility is to simply take the

potential to be V (φ) ∝ φ2n (95). Oscillating-field models are parameterized (for fixed n)

by the energy density Λede, the decay constant fede, and the initial field value φi. The

power-law index n can be considered as a fourth parameter.

4.2.2. Slow-roll models. Another possibility (15, 96) is a scalar field with a smooth “slow-

roll” potential like those considered for inflation or quintessence. For example, a potential

that asymptotes to a power law φn for large positive φ but then asymptotes to zero for

large negative φ will have an energy density that is constant at early times and then scales

as ρ ∝ a−6 at late times. Ref. (96) discusses characteristics of EDE potentials and also

generalize to models with nontrivial kinetic terms.

4.2.3. Generalized EDE. EDE models can also be approached in a slightly more model-

independent way using the generalized dark-matter (GDM) approach (97). Here, it is

noted that communication between the dark sector (dark matter, dark energy, EDE) and the

gravitational fields occurs in the Einstein equations only through the stress tensor which can

be parameterized in terms of a fluid density, pressure, sound speed, and viscosity parameter.

With this approach, the EDE can be described as a fluid with these parameters. The

approach can be beneficial as codes that modify the standard cosmological Boltzmann codes

(98, 99, 100, 101) to include rapidly oscillating fields are numerically challenging, given the

wide separation between the oscillation and expansion time scales (102). Ref. (15) showed

how the parameters of the oscillating-field model can be mapped to GDM parameters, and

Ref. (103) then mapped EDE-like physics in terms of a GDM-like parameterization.

4.2.4. Specific implementations. One of the curious aspects of EDE models is the coinci-

dence between the time at which EDE becomes dynamical and the epoch of matter-radiation

equality. It may be possible to connect these in chameleon models (104) and possibly in

22 Kamionkowski and Riess



some of the alternative-gravity models reviewed below. This epoch also coincides with the

time at which the heavier neutrino mass eigenstate(s) become(s) non-relativistic, a realiza-

tion capitalized upon in Ref. (105).

Refs. (106, 107) show that the friction required for slow-roll models may be induced

by coupling an axion field to a thermal bath in non-abelian theories. The idea of inter-

acting thermal baths also plays a role in the scenario or Ref. (108). Here, interactions

of strongly-coupled radiation are mediated by a force carrier that becomes nonrelativistic

at a temperature T ∼eV. The mediator then deposits its entropy into the lighter species

thus providing a step in the effective number Neff of relativistic degrees of freedom. This

provides a higher energy density just before recombination while avoiding the problems at

high l in the CMB power spectrum associated with an increased Neff .

4.3. Other EDE observables

If the Hubble tension is solved by EDE, it is natural to inquire whether the new physics

associated with EDE has any other observable consequences beyond the impact on the

expansion history. Given the disparity in models, there is no general consequence, but

several possibilities have been discussed.

4.3.1. Cosmic birefringence. If a scalar field φ(x) is coupled to the electromagnetic field-

strength tensor Fµν(x) through a term [φ(x)/mpl]ε
µνρσFµνFρσ in the Lagrangian, then time

evolution of the scalar field yields a difference in the propagation speeds for right- and left-

circularly polarized electromagnetic waves, and thus a frequency-independent rotation of

the linear polarization of an electromagnetic wave (109, 110, 111). One possibility for such

a time-evolving scalar field is quintessence, a candidate for dark energy (111, 13). Another

is a slowly rolling scalar field associated with EDE (112, 113). In either case, the rotation

angle is ∆φ/mPl, where ∆φ is the change in φ between the emission and observation of the

EM wave (although, strictly speaking, this result is altered if some of the rotation occurs

before recombination (113)). This “cosmic birefringence” (CB) leads to parity-breaking

EB and TB (where T, E, and B refer to the temperature and parity-even and parity-odd

polarization modes (114, 115)) correlations in the CMB power spectra (116, 117). The

association of CB with EDE can be distinguished from late-Universe CB-inducing physics

by the absence of CB observed in late-Universe probes like those that seek CB in the CMB

reionization bump (118) or in kinetic-Sunyaev Zeldovich tomography (119, 120).

4.3.2. Nonlinear evolution of oscillating EDE field. If EDE is due to an oscillating field,

nonlinear evolution of the scalar-field perturbations may lead to strong instabilities that

then generate nonlinear spatially-inhomogeneous dynamics or soliton-like structures that

then evolve as a subdominant dark-matter component (121, 95). There is also a possibility

that fluctuations in the initial field value may give rise to isocurvature perturbations (121).

4.3.3. The light horizon. Changes to the early expansion history will affect the light horizon

at decoupling probed by the “acoustic” peaks in the CMB B-mode power spectrum (122).

These B modes are induced by inflationary gravitational waves, but their amplitude depends

on the energy scale of inflation, which is still undetermined. Observation of these peaks

is conceivable with a ground-based Stage-IV CMB experiment if the B-mode amplitude

is near the current upper limit. A space-based experiment, like PICO, may be required,
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though, if it smaller by an order of magnitude, and the measurement cannot be done if the

gravitational-wave amplitude is any smaller.

4.3.4. Recurrent cosmological-constant-like behavior?. If the Hubble tension is due to

EDE, it also suggests—in combination with evidence for accelerated expansion today

(11, 10) and for inflation in the early Universe—the possibility of recurrent periods of

cosmological-constant–like behavior throughout the history of the Universe. This possi-

bility was anticipated in work on tracking-field models (123, 124), quintessence models in

which the potential is such that the energy density is always a (roughly) fixed fraction of

the energy density of the dominant matter component (radiation or matter). If, however,

there are small wiggles added to this potential, then the energy density in the quintessence

field can occasionally jump and behave briefly like a cosmological constant before decaying

away. The possibility was also anticipated in a string-axiverse scenario (91). Here, in each

logarithmic time interval in the Universe’s history, there is an axion-like field, with potential

as in equation 7, that becomes dynamical. The initial field value is chosen from random,

and if it is sufficiently displaced from the minimum, it can briefly behave dynamically like

a cosmological constant. This scenario also resembles assisted quintessence, explored in

connection with EDE in Ref. (125). The idea of recurring cosmological constants moti-

vates the search for other times in cosmic history where the expansion rate can be probed.

Big-bang nucleosynthesis constrains the expansion rate a few minutes after the big bang.

Ref. (126) discussed the possibility to probe the expansion history at redshifts z ∼ 17 with

the global 21-cm intensity as measured, for example, by EDGES (127). Velocity acoustic

oscillations—oscillations in the 21-cm angular power spectrum induced by spatial modula-

tion of star formation induced by baryon–dark-matter relative velocities—may also probe

the expansion history at similar redshifts (128, 129, 130). However, there is probably more

that can be done along these lines.

4.4. Other early-Universe solutions

4.4.1. Modified gravity. Modifications to gravity are notoriously difficult: Since modifi-

cations to the Einstein-Hilbert action generically make the scalar degree of freedom (at

least, and sometimes also the vector degrees of freedom) in the metric dynamical, there

is no obvious way to perturb away from general relativity. Nevertheless, the accelerated

cosmic expansion, the persistent mystery of dark matter, and now gravitational-wave mea-

surements that probe previously inaccessible regions of strong-field gravity have yielded an

active marketplace of alternative-gravity theories that can be explored in connection with

the Hubble tension (131, 132, 133, 134, 135, 136, 137).

For example, Ref. (131) took a phenomenological approach to modified gravity in which

the evolution of cosmological perturbations took on a parameterized departure from those in

general relativity. In relativistic cosmological perturbation theory, there are two scalar po-

tentials Φ and Ψ (in conformal Newtonian gauge) that generalize the gravitational potential

in Newtonian gravity. The equations that relate these to the energy-density perturbation,

pressure, and anisotropic stress are modified in two ways. First, Newton’s constant G in

the Fourier-space equations is multiplied by a function µ(a, k) of the scale factor a and

wavenumber k. And second, the the cosmic slip Φ−Ψ (sourced by the anisotropic stress) is

replaced by a Φ−γ(a, k)Ψ. GR is recovered in the limits γ → 1 and µ→ 1. A departure of

µ from unity at early times affects the evolution of the gravitational fields so that the phase
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of the acoustic oscillations is shifted in a way that mimics a shift in the sound horizon.

In conformally coupled gravity, the Ricci scalar R in the Einstein-Hilbert action is

multiplied by a function (1 + ξφ2/m2
Pl) of a scalar field φ with ξ = −1/6, so that the scalar

is conformally coupled. The equation of motion for the scalar field is φ̈+ 3Hφ̇− ξRφ = 0.

At early times, during radiation domination, H2 � R, and the scalar field is frozen at its

initial value. Near the transition to matter domination, when R approaches H2, the field

then starts to roll to its minimum (leaving gravity as it is today) and then has an energy

density which decays away as ρφ ∝ a−9/2 in the matter-dominated era (137).

4.4.2. Changing Neff . The idea to reduce the sound horizon by increasing the early-

Universe expansion rate preceded EDE models; it was noted that an increase in the number

Neff of relativistic degrees of freedom would allow for a larger Hubble constant (8), but this

solution did not provide a good fit to CMB data, given that an increased Neff affects the

higher-l modes in the CMB that probe redshifts up to z ∼ 106. A fractional increase in Neff

in the range of 0.2–0.4 is still allowed and could alleviate the Hubble tension. Detection of

an additional, sterile neutrino would reopen this solution space.

4.4.3. Changing physics of the baryon-photon fluid. Models with interacting neutrinos have

also been explored (138). However, they modify the sound horizon through dynamics of

the perturbations rather than increasing the expansion rate and thus should probably not

be classified as EDE models. They also run up against laboratory constraints to neutrino

properties (139). Primordial magnetic fields have also been suggested as a solution to the

Hubble tension (140), but the viability of the idea awaits a more detailed calculation of the

evolution of perturbations.

4.5. Recent results from CMB/LSS data

There is now a large literature devoted to testing various EDE models with the ever-

increasing products of ongoing galaxy surveys and CMB experiments. The results of

Ref. (90) shown in Figure 8 have been reproduced, updated, and expanded upon with

different data sets. We do not review this work in detail here, as the literature is large and

the situation rapidly evolving with new data sets.

Since the level at which EDE models differ from ΛCDM are at the ∼ 3σ-ish level, small

changes in analyses or model assumptions that one might guess were “below the radar” can

actually affect the conclusions. For example, the galaxy-clustering constraint to H0 changes

by about 0.7 km sec−1 Mpc−1 if the dark energy is assumed to be a cosmological constant

or described by a more general equation-of-state parameter (6). Similar shifts arise from

different assumptions about still-undetermined neutrino masses. Although these shifts are

small, at the 1σ level, they can change a result from the > 3σ threshold to a < 3σ result. At

this level, conclusions can also depend on the interpretation of the statistics. For example,

Refs. (141, 142, 143) argued that current data favored ΛCDM over EDE at the >∼ 3σ level,

while others (144, 145) warn that the conclusions may reflect the choice of priors.

Perhaps the most intriguing results at the time of writing are reported in Refs. (146,

147). They find that new measurements of small-scale polarization from ACT Data Release

4 (80) favor EDE over ΛCDM at the >∼ 3σ level. The results should be considered as

provisional given some possible inconsistencies between Planck and ACT measurements.

Still, the results, based on a fraction of current polarization data suggest that forthcoming
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experiments, like the Simons Observatory and CMB-S4 (if not ACT/SPT data obtained

even sooner), should distinguish EDE from ΛCDM with high statistical significance.

Perhaps the most important takeaway is that four years later, with several new data

sets (especially for small-scale CMB fluctuations, which were anticipated (90) to provide

the most stringent tests of EDE), EDE remains consistent and even possibly favored over

ΛCDM. We refer readers interested in a more detailed discussion of the statistical tech-

niques, tests, and data sets to Ref. (22), and to Ref. (19) for a comprehensive tour of EDE

models.

5. CONCLUSIONS

The discrepancy between local determinations of the cosmic expansion rate based on dis-

tance and redshift measurements and the expansion rate inferred from CMB data and

galaxy clustering has over time become statistically more significant with new data and

simultaneously survived careful scrutiny of the relevant measurements and analyses. This

Hubble tension is not solved by any quick fix to the standard cosmological model. If it

were the other way (a lower local H0), it could be accommodated with the type of models

for (late-time) dark energy that have been considered for 20 years. Analogous cosmological

tensions in the past have yielded to new insights on stellar populations (to explain Hubble’s

anomalously large initial expansion rate) and fundamental physics (the 1990s discrepancy

between the Hubble constant and age of the Universe, explained ultimately by the discov-

ery of the cosmological constant). Although it remains to be seen how the current Hubble

tension will be resolved, it is likely to provide profound new insights into astrophysics or

physics.

The most promising new-physics explanation for the Hubble tension is some new early-

Universe physics that decreases the sound horizon. The most popular playground for such

ideas has been early dark energy, which reduces the sound horizon by increasing the expan-

sion rate, but there are other models that involve, for example, modified gravity or changes

to the primordial-plasma physics. Any such model, though, is highly constrained by the

data—the model must preserve the excellent agreement between disparate and precise data

sets and the canonical ΛCDM model. Still, there are models that work and, moreover,

remain viable even after comparison with several precise new data sets. Unlike the last

(1990s) Hubble tension, which was resolved ultimately by one number—the cosmological

constant—the specification of EDE models is more complicated and thus not as easily di-

gested by theorists. Still, it is up to data to decide, not our prejudices.

Fortunately, the next steps in exploring the Hubble tension are clear. Moreover, the

required observational infrastructure is already in place, as it coincides largely with that

assembled to study (late-Universe) dark energy and inflation. Ultimately, we must con-

tinue to explore astrophysical and measurement uncertainties. As we have learned over

and over in cosmology, there is no single bullet—robust conclusions are only reached with

multiple observational avenues and a tightly knit web of calibrations, cross-calibrations, and

consistency checks.

SUMMARY POINTS

1. The values of the Hubble constant inferred from CMB measurements and galaxy

surveys disagree at the >∼ 5σ level with those obtained from measurements of
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distances and redshifts in the local Universe.

2. The discrepancy has not yielded to any simple explanations in terms of systematic

effects, despite considerable scrutiny of the CMB and local measurements.

3. Of the many models with new physics explored to explain this Hubble tension, those

that involve modifications to early-Universe dynamics seem best able to satisfy the

panoply of cosmological constraints.

4. Although there have been some hints of EDE in recent analyses, current CMB data

are not yet precise and robust enough to distinguish EDE models from the standard

ΛCDM model.

FUTURE ISSUES

1. Improving local measurements are needed to refine the Hubble constant while main-

taining control of systematic errors with ∼1% a target goal and independent tests

at ∼ 3% precision providing valuable crosschecks. Greater specificity is needed

to describe any systematic errors that would evade present detection and impact

multiple, independent measures.

2. Forthcoming experiments that map more precisely the CMB polarization on smaller

angular scales will be required to test EDE and other new-physics models for the

Hubble tension.

3. If future measurements favor EDE models over the standard ΛCDM model, it will

be important to understand more deeply the nature of the new physics that provides

EDE-like dynamics in the early Universe and to explore other times when DE may

have affected dynamics of the Universe.

4. It will also be important to think about laboratory, or other non-cosmological, tests

of any such new physics.
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129. Julian B. Muñoz. Robust Velocity-induced Acoustic Oscillations at Cosmic Dawn. Phys. Rev.

www.annualreviews.org • H0 and EDE 33



D, 100(6):063538, 2019, 1904.07881.

130. Debanjan Sarkar and Ely D. Kovetz. Measuring the cosmic expansion rate using 21-cm velocity

acoustic oscillations. 10 2022, 2210.16853.

131. Meng-Xiang Lin, Marco Raveri, and Wayne Hu. Phenomenology of Modified Gravity at

Recombination. Phys. Rev. D, 99(4):043514, 2019, 1810.02333.

132. Matteo Braglia, Mario Ballardini, Fabio Finelli, and Kazuya Koyama. Early modified gravity

in light of the H0 tension and LSS data. Phys. Rev. D, 103(4):043528, 2021, 2011.12934.

133. Matteo Braglia, Mario Ballardini, William T. Emond, Fabio Finelli, A. Emir Gumrukcuoglu,

Kazuya Koyama, and Daniela Paoletti. Larger value for H0 by an evolving gravitational

constant. Phys. Rev. D, 102(2):023529, 2020, 2004.11161.

134. Guillermo Ballesteros, Alessio Notari, and Fabrizio Rompineve. The H0 tension: ∆GN vs.

∆Neff . JCAP, 11:024, 2020, 2004.05049.

135. Mario Ballardini, Matteo Braglia, Fabio Finelli, Daniela Paoletti, Alexei A. Starobinsky, and
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