Analyzing NGC 2287 in Three Dimensions with StargateVR

By: Ben Ramsey
Advisor: Dr. Joel Kastner

Table of Contents

01

Introduction
Background information
and project goal
03
Current Results
Data and analysis

02
 Methods

Tools and application
04

Conclusion

Closing thoughts and future goals

Introducing NGC 2287

NGC 2287 also known as the Little Beehive Cluster

- Bright open star cluster
- Located in the constellation Canis Major
- Roughly the size of the full moon in the night sky

Physical parameters

- Lies 705 ± 9 pc from Earth [2]
- 100 or more stars [1]
- Metallicity: $[\mathrm{Fe} / \mathrm{H}]=-0.11[2]$

[^0]
Project Tools

StarGateVR

3D Gaia data sorting to find grouped stars

Chandra

X-ray data for determining lower mass cluster members

$$
01-02-03-04
$$

Gaia

Locating the cluster
in Gaia cone search

Python and MIST
Determining
cluster members, age, and distance

Gaia and StarGateVR

Data comes from Gaia Data Release 3

- Using search feature for preset right ascension and declination
- 16,467 stars and we only want around 100

```
gaiadr3.gaia_source.ra as ra, gaiadr3.gaia_source.dee as dec, (1/ gaiadr3.gaii_-source.parallax) \({ }^{4} 1000\) as dist, gaiadr3.gaia_source
```



``` guidi.gaia_source.bp_rp as bp_rp, O as \(\mathrm{X}, \mathrm{O}\) as \(\mathrm{Y}, \mathrm{O}\) as \(\mathrm{Z}, \mathrm{O}\) as \(\mathrm{U}, \mathrm{O}\) as \(\mathrm{V}, \mathrm{O}\) as \(\mathrm{W}, \mathrm{O}\) as absMag, O as revAbsMag, O as revbp_rp, O a
```



``` giaiarr.astrophysical_parameters.logg_-sspspec_upper as logg_up, gaiadrß.astrophysical_parameters.logg_gspspec_lo gaiadr3.astrophysical-parameters.mh_-sspspec as mh , gaiadr_3.astrophysical-parameters. mh _-gspspec_upper as mh _up,
```



``` gaiadr3.astrophysicial_parameters.classsprob_dsccccombmod_star as prob__star,
gaiadr_3.astrophysical_parameters.classprob__ds_combmod_binarystar as prob__istar, gaiadr3.gaia_source.phot_r__mean_mag as photo_rp_mean_mag, gaiadr3.gaia_source.phot_bp_mean_mag as photo_bp_mean_mag, gaiaarr3.gaia_source.g_rp as g_r. gaiadr3.gaia_source.bp_-g as bp_g -RROM gaiadr3.gaia_source, gaiadr3.astrophysical_-parameters WHERE CONAAINS
```



```
Output 16,467 stars
```


StarGateVR Interface

- Left hand - gating and control panel
- Right hand - movement and panel interaction
- XYZ is scaled in units of parsec and UVW is in km/s
- U is in the direction of galactic center, V is in the direction of the sun's motion perpendicular to the center, and W is out of the galactic plane

Data Sorting and Analysis

Cone search in XYZ and UVW in StarGateVR

Cluster Determination

Gated stars with similar velocities produce a tight grouping in distance from us $\Rightarrow 330$ stars

CMD of UVW Gate

Sorting by distance [650-850pc] allows for a tight main sequence $\Rightarrow 301$

CMD of Proper Motion Gate

Sorting by distance [650-850pc] and proper motion allows for a tight main sequence with the dimmer stars $\Rightarrow 765$

Proper Motion Membership Gains

Comparison with Published Results and Isochrones

Conclusions and Future Work

We determine the membership to be more than double the current accepted value.

- Multiple ways to separate cluster stars from surroundings
- UVW gating
- XYZ gating
- Proper motion gating

Future Work

- Crossmatching multiple methods to determine the similar members between methods
- Better extinction and reddening correction
- Potential Chandra data for studying the lower main sequence we cannot study using UVW gating

Thanks

Questions?

CREDITS: This presentation template was created
by Slidesgo, including icons by Flaticon, and infographics \& images by Freepik

Works Cited

[1] "Messier 41." Messier Objects, September 9, 2022.
https://www.messier-objects.com/messier-47/.
[2] "M41." SIMBAD Astronomical Database - CDS (Strasbourg). Accessed December 1, 2022.
http://simbad.u-strasbg.fr/simbad/sim-id?Ident=M41.
[3] "Infrared Science Archive." IPAC. Accessed December 1, 2022.
https://www.ipac.caltech.edu/project/irsa.
[4] Gaia archive. Accessed December 1, 2022. https://gea.esac.esa.int/archive/.
Credit to those who are working on StarGateVR
[5] Sun, Weijia, Chengyuan Li, Licai Deng, and Richard de Grijs. "Tidal-Locking-Induced Stellar Rotation Dichotomy in the Open Cluster
NGC 2287?" The Astrophysical Journal 883, no. 2 (2019): 182. https://doi.org/10.3847/1538-4357/ab3cd0.

[^0]: Messier 41 The Little Beehive Cluster CHI-1 2h40 Telescope Live

