Analyzing NGC 2287 in Three Dimensions with StargateVR

By: Ben Ramsey Advisor: Dr. Joel Kastner

Table of Contents

O1 Introduction

Background information and project goal

Tools and application

O3 Current Results

Data and analysis

04 Conclusion

Closing thoughts and future goals

Introducing NGC 2287

Messier 41 The Little Beehive Cluster CHI-1 2h40 | Telescope Live

NGC 2287 also known as the Little Beehive Cluster

- Bright open star cluster
- Located in the constellation Canis Major
- Roughly the size of the full moon in the night sky

Physical parameters

- Lies 705±9 pc from Earth [2]
- 100 or more stars [1]
- Metallicity: [Fe/H] = -0.11 [2]

Project Tools

StarGateVR

3D Gaia data sorting to find grouped stars

Chandra

X-ray data for determining lower mass cluster members

01 — 02 — 03 — 04 Gaia Locating the cluster in Gaia cone search Determining cluster members, age, and distance

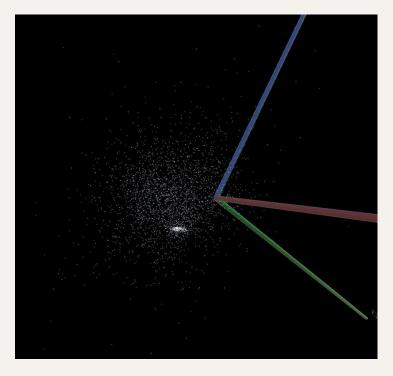
Gaia and StarGateVR

Data comes from Gaia Data Release 3

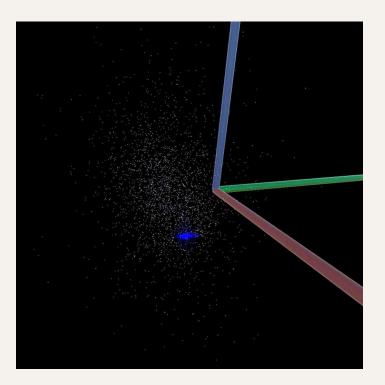
- Using search feature for preset right ascension and declination
- 16,467 stars and we only want around 100

StarGateVR Interface

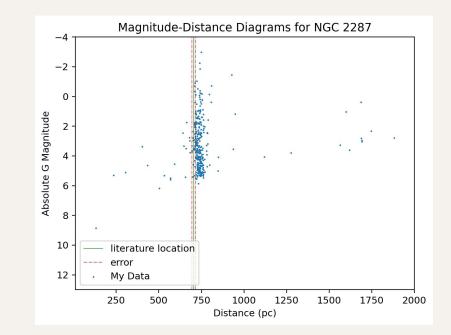
- Left hand gating and control panel
- Right hand movement and panel interaction
- XYZ is scaled in units of parsec and UVW is in km/s
- U is in the direction of galactic center, V is in the direction of the sun's motion perpendicular to the center, and W is out of the galactic plane


SELECT TOP 2000000 gaiadr3.gaia_source.source_id as source_id, gaiadr3.astrophysical_parameters.source_id as source_id2, gajadr3.gaja source.ra as ra, gajadr3.gaja source.dec as dec. (1 / gajadr3.gaja source.parallax)*1000 as dist. gajadr3.gaja source.parallax as parallax. gaiadr3.gaia_source.parallax_error as parallax_error, gaiadr3.gaia_source.l, gaiadr3.gaia_source.b, gaiadr3.gaia_source.pmra as pmra, gaiadr3.gaia_source.pmdec as pmdec, gaiadr3.gaia_source.radial_velocity as rv, gaiadr3.gaia_source.phot_g_mean_mag as photo_g_mean_mag, gaiadr3.gaia_source.bp_rp as bp_rp, 0 as X, 0 as Y, 0 as Z, 0 as U, 0 as V, 0 as W, 0 as absMag, 0 as revAbsMag, 0 as revbp_rp, 0 as zero, 1 as one, gaiadr3.astrophysical_parameters.teff_gspspec as teff, gaiadr3.astrophysical_parameters.teff_gspspec_upper as teff_up, gaiadr3.astrophysical parameters.teff gspspec lower as teff lo. gaiadr3.astrophysical parameters.logg gspspec as logg gaiadr3.astrophysical_parameters.logg_gspspec_upper as logg_up, gaiadr3.astrophysical_parameters.logg_gspspec_lower as logg_lo, gaiadr3.astrophysical_parameters.mh_gspspec as mh, gaiadr3.astrophysical_parameters.mh_gspspec_upper as mh_up, gaiadr3.astrophysical_parameters.mh_gspspec_lower as mh_lo, gaiadr3.astrophysical_parameters.alphafe_gspspec as alphafe, gaiadr3.astrophysical_parameters.alphafe_gspspec_upper as alphafe_up, gaiadr3.astrophysical_parameters.alphafe_gspspec_lower as alphafe_lo, gaiadr3.astrophysical parameters.classprob dsc combmod star as prob star. gajadr3.astrophysical parameters.classprob dsc combmod binarystar as prob bistar, gajadr3.gaja source.phot rp mean mag as photo_rp_mean_mag, gaiadr3.gaia_source.phot_bp_mean_mag as photo_bp_mean_mag, gaiadr3.gaia_source.g_rp as g_rp, gaiadr3.gaia_source.bp_g as bp_g FROM gaiadr3.gaia_source, gaiadr3.astrophysical_parameters WHERE CONTAINS(POINT('ICRS',gaiadr3.gaia_source.ra,gaiadr3.gaia_source.dec), CIRCLE('ICRS', COORDI(EPOCH_PROP_POS(101.499,-20.716,1.3600,-4.3390,-1.3810,23.5200,2000,2016.0)), COORD2(EPOCH_PROP_POS(101.499,-20.716,1.3600,-4.3390,-1.3810,23.5200,2000,2016.0)), 0.83333333333333333))=1 AND (gaiadr3.gaia_source.parallax_over_error>=5 AND gaiadr3.gaia_source.astrometric_excess_noise<=2 AND gaiadr3.astrophysical parameters.source id=gaiadr3.gaia source.source id)

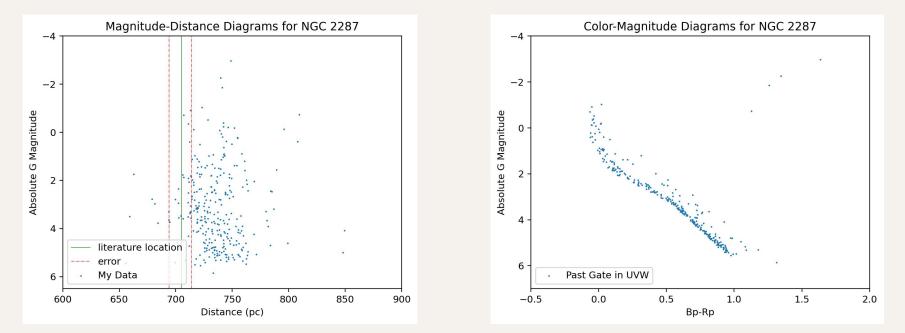
Output 16,467 stars



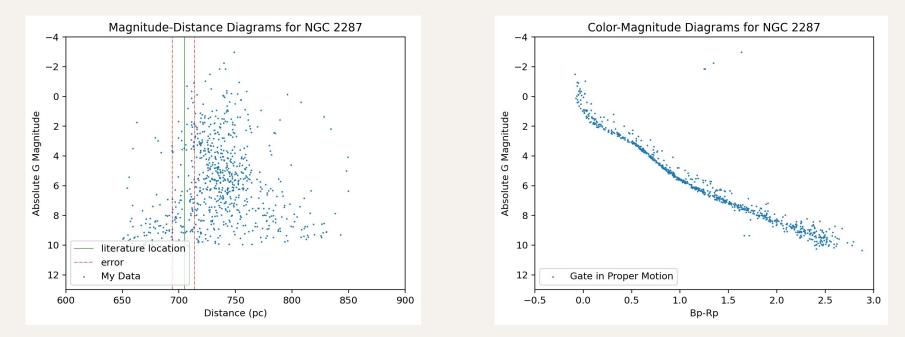
Data Sorting and Analysis



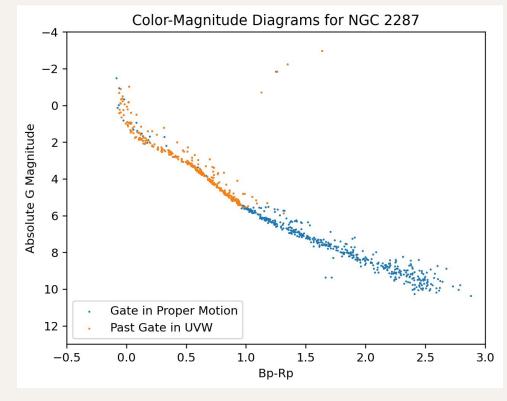
Cone search in XYZ and UVW in StarGateVR



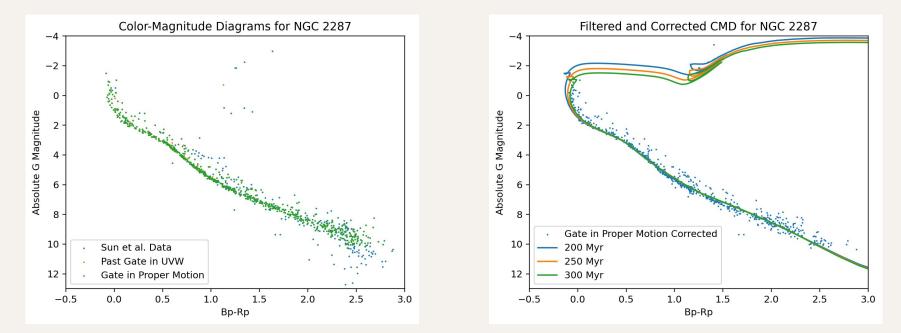
Cluster Determination


Gated stars with similar velocities produce a tight grouping in distance from us ⇒ 330 stars

CMD of UVW Gate


Sorting by distance [650-850pc] allows for a tight main sequence ⇒ 301

CMD of Proper Motion Gate



Sorting by distance [650-850pc] and proper motion allows for a tight main sequence with the dimmer stars ⇒ 765

Proper Motion Membership Gains

Comparison with Published Results and Isochrones

Conclusions and Future Work

We determine the membership to be more than double the current accepted value.

- Multiple ways to separate cluster stars from surroundings
- UVW gating
- XYZ gating
- Proper motion gating

Future Work

- Crossmatching multiple methods to determine the similar members between methods
- Better extinction and reddening correction
- Potential Chandra data for studying the lower main sequence we cannot study using UVW gating

Thanks

Questions?

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**,and infographics & images by **Freepik**

Works Cited

[1] "Messier 41." Messier Objects, September 9, 2022.

https://www.messier-objects.com/messier-41/.

[2] "M41." SIMBAD Astronomical Database - CDS (Strasbourg). Accessed December 1, 2022.

http://simbad.u-strasbg.fr/simbad/sim-id?Ident=M41.

[3] "Infrared Science Archive." IPAC. Accessed December 1, 2022.

https://www.ipac.caltech.edu/project/irsa.

[4] Gaia archive. Accessed December 1, 2022. https://gea.esac.esa.int/archive/.

Credit to those who are working on StarGateVR

[5] Sun, Weijia, Chengyuan Li, Licai Deng, and Richard de Grijs. "Tidal-Locking-Induced Stellar Rotation Dichotomy in the Open Cluster

NGC 2287?" The Astrophysical Journal 883, no. 2 (2019): 182. https://doi.org/10.3847/1538-4357/ab3cd0.