

Galaxy Morphology Classification using Unsupervised Machine Learning

Presented by: James Liu Imaging Science, PhD Advisor: Jeyhan Kartaltepe

Overview

- Motivation
- Background
- Methodology
- Results
- Future Work & Challenges

Motivation

- Understanding of Galaxy Evolution
 - Morphology Classes provides insight into Galaxy Structure, formation & evolution
- Overabundance of data from new state-of-the-art telescopes like James Webb Space Telescope (JWST)
 - Classification of Galaxy was previously conducted by only a handful of expert astronomers
 - Reliance on Citizen Science Projects like Galaxy Zoo for classification

Objective: Classify Galaxies in JWST Images using Unsupervised Machine Learning Method

Background

- Galaxy morphological classification
 - Categorize galaxies into groups based on their visual appearance
 - The Hubble Sequence invented by Edwin Hubble in 1936, is a morphological classification scheme for galaxies

Hubble Tuning Fork Diagram

Ref: https://www.conceptdraw.com/examples/fork

Background

Ref: https://lawtomated.com/supervised-vs-unsupervised-learning-which-is-better/

Ref: https://towardsdatascience.com/machine-learning-types-2-c1291d4f04b1

Background

- Centroid-Based Clustering
 - K-Means
- Density-Based Clustering
 - DBSCAN (Density-Based Spatial Clustering of applications with noise)
- Distribution-Based Clustering
 - Gaussian Mixture Models
- Hierarchical-Based Clustering
 - Agglomerative Hierarchical Clustering

Centroid-Based Clustering (K-Means)

Density-Based Clustering

Distribution-Based Clustering

Hierarchical-Based Clustering

Agglomerative Hierarchical Clustering

Overview of Clustering Results

Ref: https://scikit-learn.org/stable/modules/clustering.html

Methodology

- Simulated JWST mosaics (large surveys of the sky) are used to create stamps (individual cutouts of galaxies)
 - IllustrisTNG100 with added noise to simulate images taken from JWST
 - Correspond to those taken via JWST's NIRCam between wavelength range of 1-4 microns
 Filters: F115W, F150W, F200W, F277W, F356W, F444W
- A total of 10602 stamps were generated (1767 stamps created in each Filter)
 - Format: FITS (Flexible Image Transport System)
 - Image Size: 64 x 64 pixels
- Vector Quantized Variable Autoencoder (VQ-VAE) is used to reduce the dimensionality of the stamp data into a discrete latent representation
- Clustering of the lower dimension image data is done using a clustering algorithm.
 - K-means •

Results

Original

Latent Space

Reconstruction

Results

Future Work & Challenges

- Because JWST is still in its infancy, there is very little labeled morphology data to validate prediction/classification accuracy
 - Other methods to evaluate clustering results currently being explored
- Reliability of K-means on this dataset
 - More research into K-means should be explored to understand impact on highdimensional data
 - Testing results from other types of algorithms might provide different insight
 - Try different clustering algorithm/methodology that might provide different results i.e Hierarchical Clustering, HDBSCAN, Spectral Clustering, etc.

Summary

- Motivation
- Background
- Methodology
- Results
- Future Work & Challenges

Questions?

Quiz Time!

• Go to mycourses to answer the question