Since friction does (negative) work on the Hot Wheels car:

$$
m g h+W_{f}=\frac{1}{2} m v^{2}
$$

Solving for v :

$$
\begin{array}{r}
v=\sqrt{2\left(g h+W_{f} / m\right)} \\
t_{f}=\sqrt{2 H / g}
\end{array}
$$

The flight time does not change:
So the horizontal range is:

$$
R=2 \sqrt{h H+\left(W_{f} H / m g\right)}
$$

For the two ramps:

$$
R_{1}^{2}=4 h H+4 \frac{W_{f 1} H}{m g} \quad ; \quad R_{2}^{2}=4 h H+4 \frac{W_{f 2} H}{m g}
$$

Subtracting and solving of the difference in frictional work: $\quad W_{f 1}-W_{f 2}=m g \frac{R_{1}{ }^{2}-R_{2}{ }^{2}}{4 H}$
The difference in work comes from the flat section of the track so: $\quad W_{f 1}-W_{f 2}=\mu_{k} m g L$

Substituting this and solving for the frictional coefficient:

$$
\mu_{k}=\frac{R_{1}^{2}-R_{2}^{2}}{4 H L}
$$

