# University Physics 1 and 1A: Equation Sheet for Exam 2 

## Equations

$x=x_{o}+v_{o x} t+\frac{1}{2} a_{x} t^{2}$
$v=v_{o x}+a_{x} t$
$v_{x}^{2}=v_{o x}^{2}+2 a_{x}\left(x-x_{o}\right)$
$x-x_{o}=\frac{1}{2}\left(v_{o x}+v_{x}\right) t$
$a_{\text {centripetal }}=\frac{v^{2}}{r}$
$\sum \vec{F}=m \vec{a}$
$f_{s} \leq \mu_{s}|\vec{N}|$
$f_{k}=\mu_{k}|\vec{N}|$
for a quadratic equation of the form
$0=a x^{2}+b x+c$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

## Units and Constants

$g=9.8 \mathrm{~m} / \mathrm{s}^{2}=32 \mathrm{ft} / \mathrm{s}^{2}$

## Uncertainties

Addition or Subtraction: For $Q=x+y-z+C_{1}$

$$
\Delta Q=\Delta x+\Delta y+\Delta z
$$

Multiplication or Division: For $Q=C_{1} x y / z$

$$
\frac{\Delta Q}{Q}=\frac{\Delta x}{x_{a v g}}+\frac{\Delta y}{y_{a v g}}+\frac{\Delta z}{z_{a v g}}
$$

Powers: For $Q=C_{1} x^{m} y^{n}$

$$
\frac{\Delta Q}{Q}=|m| \frac{\Delta x}{x_{\text {avg }}}+|n| \frac{\Delta y}{y_{\text {avg }}}
$$

For other functions, follow the general rule-pick values to make $Q$ as large as possible then subtract the average value of $Q$.
$60 \mathrm{mph}=88 \mathrm{ft} / \mathrm{s}$
1 mile $=1609 \mathrm{~m}$

1 inch $=2.54 \mathrm{~cm}$

