University Physics 1 and 1A: Equation Sheet for Exam 1

Equations

$x=x_{o}+v_{o} t+\frac{1}{2} a t^{2}$
$v=v_{o}+a t$
$v^{2}=v_{o}{ }^{2}+2 a\left(x-x_{o}\right)$
$x-x_{o}=\frac{1}{2}\left(v_{o}+v\right) t$
for a quadratic equation of the form
$0=a x^{2}+b x+c$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Units and Constants

$g=9.8 \mathrm{~m} / \mathrm{s}^{2}=32 \mathrm{ft} / \mathrm{s}^{2}$
$60 \mathrm{mph}=88 \mathrm{ft} / \mathrm{s}$
1 mile $=1609 \mathrm{~m}$
1 inch $=2.54 \mathrm{~cm}$

Uncertainties

Addition or Subtraction

For $Q=x+y-z+C_{1}$
$\Delta Q=\Delta x+\Delta y+\Delta z$

Multiplication or Division

For $Q=C_{1} x y / z$
$\frac{\Delta Q}{Q}=\frac{\Delta x}{x_{\text {avg }}}+\frac{\Delta y}{y_{\text {avg }}}+\frac{\Delta z}{z_{a v g}}$

Powers

For $Q=C_{1} x^{m} y^{n}$

$$
\frac{\Delta Q}{Q}=|m| \frac{\Delta x}{x_{a v g}}+|n| \frac{\Delta y}{y_{\text {avg }}}
$$

Other Functions

Follow the general rule - pick values to make Q as large as possible then subtract the average value of Q.

