

UP1 Equation Sheet for Exams

Linear Motion:

Vector addition: If $\vec{A} = A_x \hat{i} + A_y \hat{j}$ and $\vec{B} = B_x \hat{i} + B_y \hat{j}$

then $\vec{C} = \vec{A} + \vec{B} = (A_x + B_x) \hat{i} + (A_y + B_y) \hat{j}$

and $|\vec{C}| = \sqrt{C_x^2 + C_y^2}$ and $\theta = \tan^{-1} \left(\frac{C_y}{C_x} \right)$

1D/2D Kinematics $v_x = \frac{dx}{dt}$, $a_x = \frac{dv_x}{dt}$ $\rightarrow x = \int v \, dt$, $v = \int a \, dt$

For Constant Acceleration:

$$v_{xf} = v_{xi} + a_x t; \quad x_f = x_i + v_i t + \frac{1}{2} a_x t^2; \quad v_{xf}^2 = v_{xi}^2 + 2 a_x (x_f - x_i); \quad x_f = x_i + \frac{1}{2} (v_{ix} + v_{fx}) t$$

For Constant Velocity: $\Delta x = v_x t$

Centripetal Acceleration: $a_{cent} = \frac{v^2}{r}$

Newton's 2nd Law: $\Sigma \vec{F} = m \vec{a}$ **Friction:** $f_k = \mu_k n$; $f_s \leq \mu_s n$

Dot Product: $\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta$, or $\vec{A} \cdot \vec{B} = (A_x B_x + A_y B_y + A_z B_z)$

Work by Constant Force: $W = \vec{F} \cdot \Delta \vec{r}$

General Equation for Work: $W = \int_{r_i}^{r_f} \vec{F} \cdot d\vec{r} = \int_{x_i}^{x_f} F_x dx + \int_{y_i}^{y_f} F_y dy + \int_{z_i}^{z_f} F_z dz$

Kinetic Energy: $K = \frac{1}{2} m v^2$

Work-KE: $W_{net} = \Delta K = \frac{1}{2} m v_f^2 - \frac{1}{2} m v_i^2$

Conservation of Energy: $K_i + U_{g,i} + U_{el,i} = K_f + U_{g,f} + U_{el,f} + \Delta U_{int}$

$$U_{el} = \frac{1}{2} k x^2 \quad U_g = mgh \quad \Delta U_{int} = |\text{work done by friction}| = |\mu_k n d|$$

Power: $P = \frac{dW}{dt} = \frac{\Delta \text{ energy}}{\Delta \text{ time}}$

Force-Potential Energy Relationship: $F_x = -\frac{dU}{dx}$ and $\Delta U = -W_{ab} = -\int_a^b F_x \, dx$

Linear Momentum: $\vec{p} = m \vec{v}$ **Impulse = Change in Momentum:** $\vec{J} = \Delta \vec{p} = m \vec{v}_f - m \vec{v}_i$

For Time-dependent Force: $\int \vec{F} \, dt = \Delta \vec{p}$ **For Average Force:** $\vec{F}_{ave} \Delta t = \Delta \vec{p}$

CoLM (Cons. of Linear Momentum): $\hat{x} : \Sigma \vec{p}_{x,i} = \Sigma \vec{p}_{x,f}$ $\hat{y} : \Sigma \vec{p}_{y,i} = \Sigma \vec{p}_{y,f}$

Center of Mass: Discrete Particles or Uniform-Density Objects: $\vec{r}_{cm} = \frac{\sum m_i \vec{r}_i}{\sum m_i}$

Non-Uniform-Density Objects: $\vec{r}_{cm} = \frac{\int \vec{r} \, dm}{\int dm} \rightarrow x_{cm} = \frac{\int x \, dm}{\int dm}$, and $y_{cm} = \frac{\int y \, dm}{\int dm}$

1D: $dm = \lambda dr$; **2D:** $dm = \sigma dA$; **3D:** $dm = \rho dV$

Rotational Motion:

Rotational Kinematics: $\omega = \frac{d\theta}{dt}$, $\alpha = \frac{d\omega}{dt}$ $\rightarrow \theta = \int \omega dt$, $\omega = \int \alpha dt$

For Constant Acceleration: $\omega_f = \omega_i + \alpha t$; $\theta_f = \theta_i + \omega_i t + \frac{1}{2}\alpha t^2$;

$$\omega_f^2 = \omega_i^2 + 2\alpha(\theta_f - \theta_i); \quad \theta_f = \theta_i + \frac{1}{2}(\omega_i + \omega_f)t$$

Relation to Linear Quantities $v_t = r\omega$ and $a_t = r\alpha$

Moment of Inertia (MOI) $I = \sum m_i r_i^2 = \int r^2 dm$ **Total Mass:** $M_{tot} = \sum m_i = \int dm$

1D: $dm = \lambda dr$; **2D:** $dm = \sigma dA$; **3D:** $dm = \rho dV$

Parallel Axis Theorem: $I_{||} = I_{cm} + Md^2$

Torque: $\vec{\tau} = \vec{r} \times \vec{F}$ **N2L For Rotation:** $\Sigma \vec{\tau} = I\vec{\alpha}$

Cross Product: $|\vec{A} \times \vec{B}| = |\vec{A}| |\vec{B}| \sin \theta$, or

$$|\vec{A} \times \vec{B}| = (A_y B_z - A_z B_y) \hat{i} + (A_z B_x - A_x B_z) \hat{j} + (A_x B_y - A_y B_x) \hat{k}$$

Rolling Motion: $v_{cm} = R\omega$

CoE with Rotation: If pivoted, $K_{tot} = \frac{1}{2}I\omega^2$ only, If not pivoted, $K_{tot} = \frac{1}{2}I\omega^2 + \frac{1}{2}mv_{cm}^2$

Angular Momentum: $\vec{L} = I\vec{\omega}$ or $\vec{L} = \vec{r} \times \vec{p}$

CoAM (Cons. of Ang. Momentum): $\Sigma \vec{L}_i = \Sigma \vec{L}_f$

Oscillations and Waves:

General Equation of Motion for SHM: $\frac{d^2x}{dt^2} = -\omega^2 x$

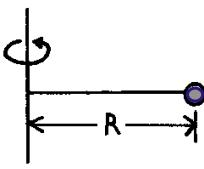
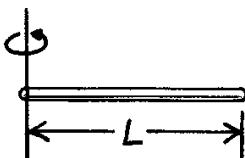
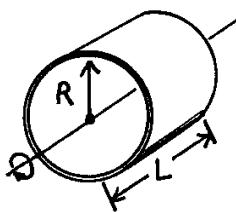
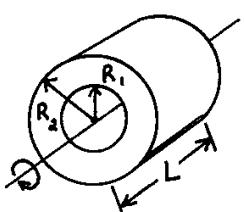
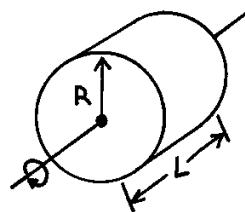
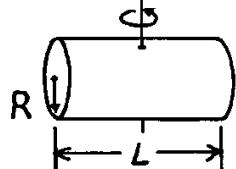
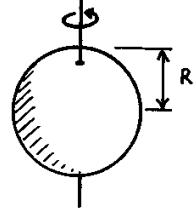
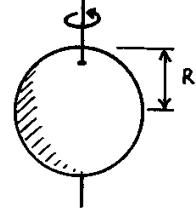
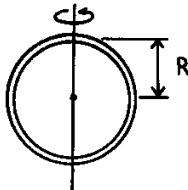
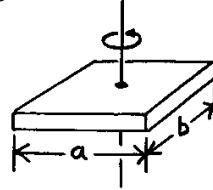
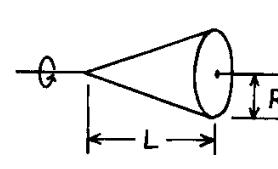
Position as function of time: $x(t) = A \cos(\omega t + \phi)$ **Time info:** $T = \frac{1}{f}$, and $\omega = \frac{2\pi}{T} = 2\pi f$

Max velocity and acceleration: $v_{max} = \omega A$, and $a_{max} = \omega^2 A$

Period of Mass on Spring: $T = 2\pi \sqrt{\frac{m}{k}}$ $\left(\omega = \sqrt{\frac{k}{m}} \right)$

Period of Pendulum at Small Angles: $T = 2\pi \sqrt{\frac{I}{m_{tot}gd}}$ $\left(\omega = \sqrt{\frac{m_{tot}gd}{I}} \right)$

Traveling Sinusoidal Wave: $y(x, t) = A \cos(kx \pm \omega t + \phi)$












Wave number and Wavelength Relationship: $k = \frac{2\pi}{\lambda}$

Speed of Traveling Wave: $v = \lambda f = \frac{\omega}{k}$

Speed of Transverse Waves on String: $v_{string} = \sqrt{\frac{\text{tension}}{\text{linear mass density}}}$

Table of Selected Moments of Inertia

For uniform-density objects only

Point mass at a radius R	Thin rod about axis through center perpendicular to length	Thin rod about axis through end perpendicular to length
 $I = MR^2$	 $I = \frac{1}{12}ML^2$	 $I = \frac{1}{3}ML^2$
Thin-walled cylinder about central axis	Thick-walled cylinder about central axis	Solid cylinder about central axis
 $I = MR^2$	 $I = \frac{1}{2}M(R_1^2 + R_2^2)$	 $I = \frac{1}{2}MR^2$
Solid cylinder about central diameter	Solid sphere about center	Thin hollow sphere about center
 $I = \frac{1}{4}MR^2 + \frac{1}{12}ML^2$	 $I = \frac{2}{5}MR^2$	 $I = \frac{2}{3}MR^2$
Thin ring about diameter	Slab about perpendicular axis through center	Cone about central axis
 $I = \frac{1}{2}MR^2$	 $I = \frac{1}{12}M(a^2 + b^2)$	 $I = \frac{3}{10}MR^2$

Note: All formulas shown assume objects of uniform mass density.