

A closer look at Galileo Thermal data from a Possible Plume Source North of Pwyll, Europa

J. A. Rathbun (PSI, @LokiVolcano, rathbun@psi.edu), J. R. Spencer (SWRI)

Many active worlds have plumes: Io, Enceladus, Earth

Plumes on Europa?

- None observed by spacecraft
- Expected due to geologic activity
- Recent observations by HST are consistent with a plume (Sparks et al., 2016, 2017)
- Reanalysis of Galileo
 magnetic and plasma wave
 data consistent with a
 plume ~1000 km away

Plumes come from "hot" areas

Is there a hot area at the source of Europa's "plumes"?

Hot spots on Europa?

- (Rathbun et al., 2010)
- Nothing obvious in a global search
- Depends on observation wavelegnth, resolution, etc.

Model Thermal properties

- Observed temperatures are consistent with passive reaction to sunlight.
- Data used: Galileo PPR
 - ground-based ALMA data (Trumbo, et al, 2017)
- Model considers how surface responds to sunlight
- Hotspots not required at either location of "plumes"

Why no hotspots? Possibly:

- 1. No plumes
- 2. Europa's plumes are not constant
- 3. Europa's plumes are different than others observed
- 4. Hotspots are smaller than we can detect with current data
 - A 100 km² feature 170K could be in either location and not be observed in either dataset. Not a "tiger stripe".

Julie Rathbun, Senior Scientist, Planetary Science Institute, @LokiVolcano, rathbun@psi.edu

Hotspot limits from PPR data

- Rathbun et al. (2010)
- PPR would have detected a 100 km² hotspot if T > ~170 K (Sparks loc), ~140 K (Jia loc)

Best PPR

Daytime temperatures

Nighttime temperatures

Sparks location – thermal model

- PPR observations at night and early-morning (3)
 - Early-morning in less sensitive filters: 27.5 (E6) & 35.5 μm
- No mid-day observations → bad thermal model
- Trumbo et al. (2017) observed location in daytime using ALMA (1.3 mm)
 - Colder →
 thermal
 inertia >
 surroundings,
 NOT
 endogenic
 heating

Favored model (Red line)

- Different emissivities, at PPR: 0.9 (Voyager value), at ALMA: 0.8 (Trumbo value)
 - Albedo: 0.54, thermal inertia: 133 MKS
 - similar to Trumbo, et al. (2017) and Rathbun and Spencer (2014) values
- Caveats
 - Different observing times
 - PPR: 12/1996 & 9/1998
 - ALMA: 11/2015
 - HST: 3/2014 & 2/2016
 - Different wavelengths
 - Probe to different depths

Plume?

- Nighttime temperatures of Io's Pele plume deposit higher than background
 - Different material
- Suggests higher thermal inertia in plume fallout
- No thermal inertia anomaly in the Jia location

Could a hotspot be hiding?

	Radius (km)	Area (km²)	Temperature (K)	Brightness
ALMA data at 1.3 mm, Brightness in W/m/str				
background	156	2.4x10 ⁴	120 (emis corr.)	0.8
Hotspot	10	100	200	6x10 ⁻³
PPR data in open filter, Brightness in GW				
background	45	$2.0x10^3$	95	9.2
Hotspot	10	100	170	4.7
"tigerstripe"	120 km long	86	133	1.5
PPR detection limits			2-5 GW	

Conclusions

Sparks location

- Endogenic heating not necessary
- Higher measured thermal inertias near Pwyll are consistent with higher thermal inertias in plume fallout from Io's Pele plume
- Need data from E-THEMIS on Europa Clipper
 - Multiple wavelengths simultaneously
 - Higher spatial resolution

Jia location

- Better observed by PPR
- Not located within PPR nighttime thermal anomaly
- Nothing in thermal data that suggests this location is special
- Seems too far from Sparks location (~1000 km) to be same plume source.